基于Faster-RCNN的钢铁表面缺陷检测,支持图像和视频检测(pytorch框架,python源码)

 功能演示:

基于Faster-RCNN的钢铁表面缺陷检测系统,支持图像检测和视频检测(pytorch框架)_哔哩哔哩_bilibili

(一)简介

基于Faster-RCNN的钢铁表面缺陷检测系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型权重,模型训练记录,ui界面等。ui界面由pyqt5设计实现。

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:
超详细的pycharm+anaconda搭建python虚拟环境_pycharm配置anaconda虚拟环境-CSDN博客

pycharm+anaconda搭建python虚拟环境_哔哩哔哩_bilibili

(二)项目介绍

1. 项目结构

​​

对应的目录结构如下:

​​​​

该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单:

第一步:模型训练,即运行train_res50_fpn.py文件 

第二步:模型验证,当模型训练完后,运行validation.py文件

第三步:使用模型,即运行gui.py文件即可通过GUI界面来展示模型效果

2. 数据集 ​​​

部分数据展示: 

​​​​

3.GUI界面(技术栈:pyqt5+python) 
a.GUI初始界面

​​​​

b.图像检测界面

​​​​

c.视频检测界面

​​

4.模型训练和验证的一些指标及效果

​​​​

​​

​​

(三)总结

以上即为整个项目的介绍,整个项目主要包括以下内容:完整的程序代码文件、训练好的模型、数据集、UI界面和各种模型指标图表等。

项目运行过程如出现问题,请及时交流!

### Faster R-CNN在钢铁行业的应用 #### 应用背景 在钢铁行业中,表面质量控制至关重要。传统的人工目视检查方法效率低且容易受到人为因素影响。Faster R-CNN作为一种先进的目标检测算法,在自动化缺陷检测方面表现出显著优势[^2]。 #### 架构概述 Faster R-CNN的整体架构由两个主要组件构成:Region Proposal Network (RPN) Fast R-CNN。这两个模块共享同一个卷积神经网络(CNN),用于从输入图像中提取特征。具体来说: - **RPN阶段** - 输入图像经过CNN处理生成特征图。 - 对于每个滑动窗口位置上的CONV单元,将其对应的特征映射转换成固定长度的向量形式。 - 将这些向量送入Softmax层来判断是否存在潜在的目标以及Regressors层调整候选框的位置参数,从而预测可能存在的缺陷边界框坐标。 - **Fast R-CNN阶段** - 基于前一步骤产生的候选区域(ROIs),进一步精炼定位精度并完成最终分类任务。 - ROIs被映射回原始特征图上对应的小块,并通过ROI Pooling操作转化为统一尺寸的特征表示。 - 这些标准化后的特征随后进入全连接层,用来精确估计边界框的具体位置及其内部物体类别标签。 ```python import torch from torchvision.models.detection import fasterrcnn_resnet50_fpn, FasterRCNN_ResNet50_FPN_Weights weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT model = fasterrcnn_resnet50_fpn(weights=weights) # 设置模型为评估模式 model.eval() def preprocess(image_path): from PIL import Image img = Image.open(image_path).convert('RGB') transform = weights.transforms() input_tensor = transform(img) return input_tensor.unsqueeze(0) image_paths = ["steel_defect_image.jpg"] # 替换为实际图片路径列表 inputs = list(preprocess(path) for path in image_paths) with torch.no_grad(): predictions = model(inputs)[0] for box, label, score in zip(predictions['boxes'], predictions['labels'], predictions['scores']): if score > 0.8: # 只显示置信度大于80%的结果 print(f"Detected {label.item()} with confidence {score:.2f} at bbox={box.tolist()}") ``` 此代码片段展示了如何加载预训练好的Faster R-CNN模型,并应用于单张钢材质表面照片来进行实时在线监测,识别其中可能出现的各种类型瑕疵或损伤情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值