跟李沐学AI:语言模型

语言模型定义

假设在给定长度为T的文本序列中的词元依次为x_1,x_2,\dots ,x_tx_t可被人做文本序列在时间步t处的观测或标签。在给定这样的文本序列是,语言模型的目标是估计序列的联合概率P(x_1,x_2,\dots ,x_t)

一个理想的与语言模型能够在一次抽取一个词元x_t\sim P(x_t \mid x_{t-1},\dots ,x_1)的情况下基于模型本身生成自然文本。

学习语言模型

基于语言模型的基本规则,一个包含了四个单词的文本序列的概率是:

为了训练语言模型,我们需要计算单词的概率, 以及给定前面几个单词后出现某个单词的条件概率。 这些概率本质上就是语言模型的参数。

马尔可夫模型与n元语法

当文本序列很长、文本量不够时,使用计数方法进行建模可能效果不佳。因此,可以在语言模型中引入马尔可夫模型以缓解这个问题。

涉及一个、两个和三个变量的概率公式分别被称为 一元语法(unigram)、二元语法(bigram)和三元语法(trigram)模型。 

n元语法对应马尔可夫模型中的tau=n。一元语法认为每个token都是独立的。二、三元语法认为每个token与当前token的前两个token相关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值