老猿Python
文章平均质量分 93
老猿Python系列文章用于逐步介绍老猿学习Python后总结的学习经验,这些经验有助于没有接触过Python的程序员可以很容易地进入Python的世界。
LaoYuanPython
CSDN 2020年博客之星TOP3。博客主要关注音视频剪辑、数字图像处理、图形界面开发等Python相关知识!
另有高数、图像处理、OpenCV、Python以及架构类等电子书,如需要请扫描博客左下部二维码加微公号咨询。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
老猿学5G专栏文章目录
☞ ░ 前往老猿Python博文目录 ░一、3GPP规范文档及其他推荐阅读博文老猿学5G扫盲贴:3GPP规范文档命名规则及同系列文档阅读指南老猿学5G扫盲贴:3GPP规范中部分与计费相关的规范序列文档老猿学5G扫盲贴:R15/R16中计费架构和计费原则涉及的规范文档老猿学5G扫盲贴:3GPP规范中与计费相关的主要规范文档列表及下载链接老猿学5G扫盲贴:推荐三篇介绍HTTP2协议相关的文章老猿学5G扫盲贴:移动边缘计算(Mobile Edge Computing, MEC)二、5G中常用知识原创 2020-07-05 19:24:16 · 4606 阅读 · 0 评论
-
老猿Python博文汇总目录--按标题排序
☞ ░ 前往老猿Python博文目录 ░本部分为老猿CSDN全部博文的汇总(含转载部分),所有文章在此未进行归类,仅按文章标题排序。BloomFilte布隆过滤器简介CSDN-markdown编辑器使用方法HTTP请求头和响应头详解【转】HTTP响应报文应答状态码及含义IT人的5G网络架构视点:从网络架构演进的前世今生详解5G各NF网络功能体Model/View开发小结PyCharm中怎么将非当前工程文件的目录的文件加到当前工程中PyQt Designer中带参数的信号为什么匹配不到带参原创 2020-07-04 22:19:29 · 4854 阅读 · 0 评论
-
PyQt+moviepy音视频剪辑实战文章目录
本专栏为moviepy音视频开发的免费专栏,基于老猿阅读moviepy1.03版本的源代码以及大量测试验证的基础上,介绍moviepy主要音视频剪辑相关类的方法、以及一些音视频剪辑合成处理的场景化支撑能力和部分剪辑合成实现的案例或工具开发。原创 2020-05-17 21:02:12 · 7203 阅读 · 0 评论
-
Python基础教程目录
老猿Python博文目录专栏:使用PyQt开发图形界面Python应用老猿Python部分代码样例老猿Python重难点知识博文汇总老猿Python博客地址第1章 Python学习环境构建目录第2章 Python编程基础知识目录第3章 Python的数据类型目录第4章 基础知识进阶目录第5章函数进阶目录第6章 Python中的动态可执行方法目录第7章 Python类型、类...原创 2020-03-23 16:37:59 · 7460 阅读 · 3 评论
-
老猿Python博客文章目录索引
第1章 学习环境构建第2章 Python编程基础知识原创 2019-08-02 21:52:31 · 39740 阅读 · 23 评论
-
扣子智能体实现非流式对话的过程及API详解
本文介绍了调用扣子智能体平台智能体实现非流式对话的过程,并介绍了实现中需要涉及的API相关请求和应答消息内容。通过**发起对话API**实现向智能体提交服务请求,通过**查看对话详情API**查看对话是否处理完成,通过**查看对话消息详情API**可以获取非流式对话的智能体处理完成应答,就可以在客户端远程调用一次智能体服务。原创 2025-11-08 14:00:00 · 1779 阅读 · 1 评论 -
基于新版本扣子(coze)平台的TTS智能体创建发布过程及开放API信息查阅方法
本文介绍了在字节跳动其下的COZE AI应用开发平台2025年10月版本配置开发简单智能体的全过程案例,通过该案例可以了解智能体的基本能力和开发智能体的基本过程,并了解COZE提供的 API能力。原创 2025-11-08 06:30:00 · 1726 阅读 · 0 评论 -
使用API调用扣子语音合成TTS智能体实现文本转语音功能
本文介绍了调用扣子智能体实现文本转语音的具体实现,通过对智能体发起非流式对话,然后判断智能体对话任务是否处理完成,在任务处理完成后调用查看智能体对话消息详情来获取智能体应答,根据应答提供的生成语音的URL地址下载音频到本地。这个案例过程有助于理解扣子智能体的非流式对话服务的整体过程。原创 2025-11-08 19:00:00 · 1299 阅读 · 0 评论 -
Scikit-learn(sklearn)机器学习的数据分割方法--重复 K 折RepeatedKFold
本文介绍了重复 K 折交RepeatedKFold数据分割的原理、算法以及在Scikit-learn(sklearn)中的实现,并提供了一个使用案例。RepeatedKFold首先将数据分成 K 个折叠,执行标准的 K-Fold 交叉验证,然后重复这个过程 n 次,每次使用不同的随机分割,每次都会重新随机划分 K 个折叠来提升评估的稳定性和可靠性。原创 2025-08-16 16:15:00 · 1294 阅读 · 0 评论 -
Scikit-learn(sklearn)机器学习的数据分割方法--分层K折交叉验证StratifiedKFold
本文介绍了机器学习的数据分割方法--分层K折交叉验证StratifiedKFold的原理以及在sklearn中的实现,并结合案例介绍了StratifiedKFold的使用。老猿认为StratifiedKFold这个方法在kfold的思想基础上,借鉴了train_test_split使用分类标签stratify的场景。原创 2025-08-16 09:01:11 · 952 阅读 · 0 评论 -
Scikit-learn(sklearn)机器学习的数据分割方法--train_test_split和KFold
本文简单介绍了机器学习中的数据分割经常使用的方法,并具体介绍了sklearn中简单随机分割train_test_split、标准K折交叉验证KFold两种具体方法及其使用案例,后续文章将介绍其他几种数据分割方法。需要注意任何基于统计的预处理(如均值填充、标准化)都应仅在训练集上计算参数,再应用到测试集,这样测试集才能起到评估训练后模型的效果。原创 2025-07-20 18:28:51 · 1500 阅读 · 0 评论 -
一个概率谬论:于北辰的飞弹拦截率210%的笑话
拦截成功率210%就是一个所谓专家抛出的似是而非的谬论,乍一听都觉得不对,但又不知错在哪里,用概率论却很容易来论证,掌握一点概率论知识真的非常实用。原创 2025-07-20 09:00:50 · 2244 阅读 · 0 评论 -
sklearn(Scikit-learn)中的数据集介绍
数据是人工智能工作的燃料,Scikit-learn内置了多种经典数据集,适用于机器学习算法的快速验证、教学和实验。本文详细介绍了每种数据集的功能、加载方法和归属类别,有助于大家快速掌握Scikit-learn的数据集情况,并在进行机器学习时熟练使用。原创 2025-07-13 19:24:50 · 1223 阅读 · 0 评论 -
sklearn(Scikit-learn)开源机器学习库介绍
Scikit-learn是 Python 中最受欢迎的开源机器学习库,专为监督学习和无监督学习任务设计。sklearn提供了包括数据预处理、模型训练、模型评估、实用工具等相关能力,并内置机器学习常见的数据集。但因为其局限性scikit-learn 不支持复杂的机器学习任务(如深度学习)、不支持深度学习、不适合超大规模数据, 对非结构化数据处理能力弱。本文就sklearn(Scikit-learn)开源机器学习库的功能、主要能力等相关内容简单做了个介绍,后续文章将展开详细介绍相关能力。原创 2025-07-13 15:30:00 · 1278 阅读 · 0 评论 -
scikit-learn依赖的高效序列化(保存/加载)和并行计算的Python joblib库
joblib 是一个用于 Python 的轻量级流水线工具库,是机器学习工程师和数据科学家的必备工具,特别适合模型持久化、并行加速、大数据处理、快速磁盘缓存。本文介绍了joblib的功能、安装,并结合案例介绍了主要的API能力。原创 2025-07-13 08:48:28 · 1567 阅读 · 0 评论 -
AdaBoost第m轮弱分类器的样本权重与第m-1轮的强分类器之间的关系证明
本文介绍了AdaBoost提升算法第m轮弱分类器的样本权重与第m-1轮的强分类器之间的关系,并通过算术推导进行了证明。通过推导可以确认 $w_{mi}$ 和前 $m-1$ 次迭代的强分类器 $F_{m-1}(x_i)$ 存在正比例关系,这个关系对于利用AdaBoost的损失函数求弱分类器的权重值非常有用。原创 2025-06-17 07:23:43 · 1040 阅读 · 0 评论 -
AdaBoost自适应提升算法
本文介绍了AdaBoost自适应提升算法的思路、原理及算法详细过程,并针对该过程中样本数据的初始权重值和弱分类器的权值计算方式进行了展开介绍,有利于各位读者完整理解该算法。原创 2025-06-17 07:20:28 · 933 阅读 · 0 评论 -
参与2024年CSDN博客之星评委评审的收获
本文介绍了笔者参与CSDN2024年博客之星主题文章评审的情况,通过评审,发现了好多的青年才俊,希望以后大家都能成长为参天大树。原创 2025-03-23 10:24:08 · 1216 阅读 · 0 评论 -
Moviepy进行视频resize缩放报错:AttributeError: module ‘PIL.Image‘ has no attribute ‘ANTIALIAS‘
本文介绍了Moviepy进行视频resize缩放报错:AttributeError: module 'PIL.Image' has no attribute 'ANTIALIAS'的问题原因及四种解决办法,包括修改moviepy的resize函数、升级moviepy、降级pillow以及用自定义函数替换resize函数,但由于moviepy2.0 相较以前的版本有非常大的变化,因此具体怎么处理需要结合大家的实际情况综合考虑。原创 2025-03-23 09:14:34 · 1764 阅读 · 0 评论 -
COZE扣子平台TTS语音合成智能体及API访问功能完善
本文在《[在扣子(coze)配置一个提供TTS语音合成服务+咨询服务的综合智能体:语音合成助手》](https://blog.csdn.net/LaoYuanPython/article/details/145932309)基础上对语音合成助手智能体和调用API的方法进行了完善,实现了通过API可以指定完成语音合成任务、输出合成的MP3文件保存到本地,并可以在合成过程中指定音色类型。原创 2025-03-08 16:50:18 · 2367 阅读 · 0 评论 -
在扣子(coze)配置一个提供TTS语音合成服务+咨询服务的综合智能体:语音合成助手
本文介绍了如何在coze平台配置一个提供TTS语音合成服务+咨询服务的综合智能体:语音合成助手,提供了Python调用API访问语音合成助手完成语音合成任务的方法。同时通过构建智能体实现业务功能的过程中,提示词工程在这种稍显复杂逻辑的智能体服务中起到了非常重要作用。原创 2025-03-08 16:48:33 · 2877 阅读 · 0 评论 -
使用Python requests库调用扣子(coze)API实现AI智能体对话案例
本文介绍了coze智能体中的一些基本概念和发起一次远程智能体会话调用的三个基本API,并用这三个基本API结合Python requests库实现了一个远程调用智能体完成一次对话的程序示例,便于大家理解coze智能体Python开发的实现方式。原创 2025-03-01 16:51:51 · 8919 阅读 · 5 评论 -
扣子(coze)智能体创建发布过程及开放API信息查阅方法
本文介绍了在字节跳动其下的COZE AI应用开发平台配置开发简单智能体的全过程案例,通过该案例可以了解智能体的基本能力和开发智能体的基本过程,并了解COZE提供的 API能力。原创 2025-03-01 16:48:23 · 5359 阅读 · 0 评论 -
使用科大讯飞语音在线合成服务实现中文文本转语音全攻略
本文介绍了在科大讯飞创建文本转语音应用的详细步骤,并提供了官网平台demo下载的方法,但下载的代码存在3个影响运行的问题,老猿将其总结了下,并给出了完善建议,大家按照建议进行处理,就能真正完成一个中文文本转语音的示例了。原创 2025-01-01 15:30:22 · 4227 阅读 · 3 评论 -
2024年11月18日-22日期间如果方便请大家帮忙投个票,谢谢啦!
星河杯投票链接原创 2024-11-18 11:02:35 · 375 阅读 · 0 评论 -
关于数据库多表查询内连接、外连接知识详解
本文结合相关案例介绍了数据库中内连接、外连接相关的概念及具体语法,包括隐内连接、显示内连接、自然连接、左外连接、右外连接、全连接,还包括部分支持的语法糖形式SQL语法。原创 2024-11-12 06:41:27 · 2872 阅读 · 0 评论 -
在统信操作系统下达梦8数据库配置unixodbc遇到的三个问题
本文介绍了在ARM+统信操作系统的机器上安装unixodbc适配达梦数据库遇到的三个问题,其中第一个问题是安装版本与机器环境不兼容,通过官网下载最新版本解决,第二个问题是由于找不到libodbcinst.so库文件,通过设置路径或拷贝libodbcinst.so到相关路径解决,第三个问题是由于配置的odbc.ini文件目录不对导致,调整目录即可。原创 2024-11-12 06:37:42 · 1290 阅读 · 0 评论 -
统信UOS下达梦数据库启动图形界面应用工具monitor报JAVA相关错:An error has occurred. See the log file
本文介绍了统信UOS下启动图形界面应用工具monitor由于JDK版本适配导致的报错:An error has occurred.的解决办法,避免该问题的解决办法是不单独安装JDK,而是要直接使用达梦数据库自带的JDK,并注意最终环境变量设置要指向达梦数据库自带JDK。原创 2024-10-30 21:30:30 · 1577 阅读 · 0 评论 -
统信UOS下启动达梦数据库图形界面应用工具manager报错:No protocol specified的解决办法
本文介绍了达梦数据库图形界面manager工具启动时报“No protocol specified”错的问题原因、解决办法,相关解决办法对其他达梦数据库图形工具类似问题同样有效。原创 2024-10-30 20:58:07 · 1883 阅读 · 0 评论 -
基于飞腾2000CPU+浪潮电脑+统信UOS安装达梦数据库详解
本文详细介绍了在基于飞腾2000CPU+浪潮电脑+统信UOS下载、安装达梦数据库的详细过程,相关操作是笔者结合官方文档在实际操作过程的详细总结,对照该文档,相信大家就可以在飞腾2000CPU+统信UOS机器上顺利安装达梦数据库。原创 2024-10-27 09:42:01 · 2054 阅读 · 1 评论 -
神经网络激活函数定义速查
本文简约介绍了神经网络常用的激活函数计算公式,可以用于不记得激活函数定义者速查。原创 2024-10-23 20:00:28 · 1357 阅读 · 0 评论 -
神经网络高级激活函数大全及keras中的函数定义
本文介绍了神经网络中常用的高级激活函数以及Keras中的具体函数,高级激活函数通常比基础激活函数更复杂,可能包含更多的参数或计算步骤,通常旨在解决基础激活函数的某些限制,如梯度消失或激活函数的非单调性。基础激活函数适用于大多数情况,但高级激活函数可能在特定任务或网络结构中表现更好。选择哪种激活函数通常取决于具体任务的需求、数据的特性以及实验的结果。在实践中,可能需要尝试不同的激活函数来找到最适合特定问题的激活函数。原创 2024-10-13 20:13:56 · 1595 阅读 · 0 评论 -
使用mnist数据集和LeakyReLU高级激活函数训练神经网络示例代码
本文介绍了使用mnist数据集和LeakyReLU高级激活函数训练神经网络示例代码,这个示例代码使用全连接层,激活函数在隐藏层使用的是LeakyReLU,输出层使用的是softmax。这个神经网络是比较简单的神经网络,根据训练后的测试情况,其识别精度接近98%。原创 2024-10-13 20:08:50 · 1046 阅读 · 0 评论 -
神经网络激活函数列表大全及keras中的激活函数定义
在机器学习中,激活函数是神经网络中的一种函数,用于在神经网络的每个神经元中引入非线性。没有激活函数,神经网络就无法学习复杂的模式,因为线性变换的组合仍然是线性的。在Keras中,激活函数可以通过设置单独的 Activation 层实现,也可以在构造层对象时通过传递 activation 参数实现。本文介绍了11个激活函数,包括线性函数linear、线性指数激活函数elu、整流线性单元relu、可伸缩指数线性单元SELU、softmax函数、softplus函数、softsign函数、sigmoid函数、ha原创 2024-10-06 20:12:36 · 2201 阅读 · 0 评论 -
机器学习中的模型、策略和算法
本文介绍了机器学习方法的模型、策略和算法三要素的概念,模型就是所要学习的条件概率分布或决策函数,由决策函数表示的模型称为非概率模型,由条件概率表示的模型称为概率模型,模型存在于假设空间中。模型的假设空间有无穷多的模型,机器学习的目标就是要从假设空间中按一定的准则来学习或选择最优模型,这个准则就是学习的策略。策略是连接模型和算法的桥梁,它决定了如何使用算法来训练模型,以达到最佳的学习效果。策略涉及如何构建和训练模型,它包括损失函数的选择、正则化方法、学习速率的设定等,策略决定了模型的训练方式。策略有多种,其中原创 2024-09-22 10:44:41 · 1583 阅读 · 0 评论 -
Keras中initializers模块常见模型初始化方法详解
本文详细介绍了Keras中initializers模块常见模型初始化方法的含义,文章大部分内容来源于官网参考文档:[Keras初始化器的用法](https://keras-zh.readthedocs.io/initializers/) ,部分内容为笔者单独研究进行的补充,有助于深入理解各个初始化器的用法。最后使用keras提供了一个完整的简单模型进行训练的例子。原创 2024-09-12 08:29:35 · 1809 阅读 · 0 评论 -
人工智能基础概念4:似然函数、最大似然估计案例详解
本文结合详细的案例介绍了似然函数和最大似然估计的概念,并通过典型案例说明了最大似然估计的计算过程,有助于大家理解似然函数和最大似然估计。原创 2024-04-04 21:36:32 · 2570 阅读 · 1 评论 -
统计机器学习基础知识
本文介绍了机器学习的一些基础知识,机器学习是人工智能的一个分支,而借助于机器学习中的神经网络,通过多层神经网络进行知识学习的深度学习是机器学习领域中的一个重要研究方向。原创 2024-08-31 11:07:43 · 2316 阅读 · 0 评论 -
用蒙特卡罗积分法近似求解定积分的值及举例
本文介绍了蒙特卡罗积分法近似求解定积分的方法,并举例说明了具体使用方法。原创 2024-06-06 20:00:18 · 2663 阅读 · 2 评论 -
感知机学习算法中的Novikoff定理证明中的隐含背景知识
本文介绍了《统计学习方法》(李航著)第二章感知机学习中的Novikoff定理证明过程的隐含知识,好方便大家理解证明过程,相关知识总结起来就是两点,一是任何非零向量都可以标准化为模长为1的向量,二是对于线性映射函数,对权重向量进行标准化同时对截距进行相应变换后不影响映射函数其所表达的超平面,即权重向量标准化(含截距处理)前后所代表的超平面是同一个。原创 2024-04-21 20:42:08 · 1889 阅读 · 1 评论
分享