
老猿Python
文章平均质量分 93
老猿Python系列文章用于逐步介绍老猿学习Python后总结的学习经验,这些经验有助于没有接触过Python的程序员可以很容易地进入Python的世界。
LaoYuanPython
CSDN 2020年博客之星TOP3。博客主要关注音视频剪辑、数字图像处理、图形界面开发等Python相关知识!
另有高数、图像处理、OpenCV、Python以及架构类等电子书,如需要请扫描博客左下部二维码加微公号咨询。
展开
-
老猿学5G专栏文章目录
☞ ░ 前往老猿Python博文目录 ░一、3GPP规范文档及其他推荐阅读博文老猿学5G扫盲贴:3GPP规范文档命名规则及同系列文档阅读指南老猿学5G扫盲贴:3GPP规范中部分与计费相关的规范序列文档老猿学5G扫盲贴:R15/R16中计费架构和计费原则涉及的规范文档老猿学5G扫盲贴:3GPP规范中与计费相关的主要规范文档列表及下载链接老猿学5G扫盲贴:推荐三篇介绍HTTP2协议相关的文章老猿学5G扫盲贴:移动边缘计算(Mobile Edge Computing, MEC)二、5G中常用知识原创 2020-07-05 19:24:16 · 4431 阅读 · 0 评论 -
老猿Python博文汇总目录--按标题排序
☞ ░ 前往老猿Python博文目录 ░本部分为老猿CSDN全部博文的汇总(含转载部分),所有文章在此未进行归类,仅按文章标题排序。BloomFilte布隆过滤器简介CSDN-markdown编辑器使用方法HTTP请求头和响应头详解【转】HTTP响应报文应答状态码及含义IT人的5G网络架构视点:从网络架构演进的前世今生详解5G各NF网络功能体Model/View开发小结PyCharm中怎么将非当前工程文件的目录的文件加到当前工程中PyQt Designer中带参数的信号为什么匹配不到带参原创 2020-07-04 22:19:29 · 4733 阅读 · 0 评论 -
PyQt+moviepy音视频剪辑实战文章目录
本专栏为moviepy音视频开发的免费专栏,基于老猿阅读moviepy1.03版本的源代码以及大量测试验证的基础上,介绍moviepy主要音视频剪辑相关类的方法、以及一些音视频剪辑合成处理的场景化支撑能力和部分剪辑合成实现的案例或工具开发。原创 2020-05-17 21:02:12 · 6996 阅读 · 0 评论 -
Python基础教程目录
老猿Python博文目录专栏:使用PyQt开发图形界面Python应用老猿Python部分代码样例老猿Python重难点知识博文汇总老猿Python博客地址第1章 Python学习环境构建目录第2章 Python编程基础知识目录第3章 Python的数据类型目录第4章 基础知识进阶目录第5章函数进阶目录第6章 Python中的动态可执行方法目录第7章 Python类型、类...原创 2020-03-23 16:37:59 · 7296 阅读 · 3 评论 -
老猿Python博客文章目录索引
第1章 学习环境构建第2章 Python编程基础知识原创 2019-08-02 21:52:31 · 38874 阅读 · 23 评论 -
参与2024年CSDN博客之星评委评审的收获
本文介绍了笔者参与CSDN2024年博客之星主题文章评审的情况,通过评审,发现了好多的青年才俊,希望以后大家都能成长为参天大树。原创 2025-03-23 10:24:08 · 1088 阅读 · 0 评论 -
Moviepy进行视频resize缩放报错:AttributeError: module ‘PIL.Image‘ has no attribute ‘ANTIALIAS‘
本文介绍了Moviepy进行视频resize缩放报错:AttributeError: module 'PIL.Image' has no attribute 'ANTIALIAS'的问题原因及四种解决办法,包括修改moviepy的resize函数、升级moviepy、降级pillow以及用自定义函数替换resize函数,但由于moviepy2.0 相较以前的版本有非常大的变化,因此具体怎么处理需要结合大家的实际情况综合考虑。原创 2025-03-23 09:14:34 · 1153 阅读 · 0 评论 -
COZE扣子平台TTS语音合成智能体及API访问功能完善
本文在《[在扣子(coze)配置一个提供TTS语音合成服务+咨询服务的综合智能体:语音合成助手》](https://blog.csdn.net/LaoYuanPython/article/details/145932309)基础上对语音合成助手智能体和调用API的方法进行了完善,实现了通过API可以指定完成语音合成任务、输出合成的MP3文件保存到本地,并可以在合成过程中指定音色类型。原创 2025-03-08 16:50:18 · 1246 阅读 · 0 评论 -
在扣子(coze)配置一个提供TTS语音合成服务+咨询服务的综合智能体:语音合成助手
本文介绍了如何在coze平台配置一个提供TTS语音合成服务+咨询服务的综合智能体:语音合成助手,提供了Python调用API访问语音合成助手完成语音合成任务的方法。同时通过构建智能体实现业务功能的过程中,提示词工程在这种稍显复杂逻辑的智能体服务中起到了非常重要作用。原创 2025-03-08 16:48:33 · 1428 阅读 · 0 评论 -
使用Python requests库调用扣子(coze)API实现AI智能体对话案例
本文介绍了coze智能体中的一些基本概念和发起一次远程智能体会话调用的三个基本API,并用这三个基本API结合Python requests库实现了一个远程调用智能体完成一次对话的程序示例,便于大家理解coze智能体Python开发的实现方式。原创 2025-03-01 16:51:51 · 4386 阅读 · 3 评论 -
扣子(coze)智能体创建发布过程及开放API信息查阅方法
本文介绍了在字节跳动其下的COZE AI应用开发平台配置开发简单智能体的全过程案例,通过该案例可以了解智能体的基本能力和开发智能体的基本过程,并了解COZE提供的 API能力。原创 2025-03-01 16:48:23 · 2587 阅读 · 0 评论 -
使用科大讯飞语音在线合成服务实现中文文本转语音全攻略
本文介绍了在科大讯飞创建文本转语音应用的详细步骤,并提供了官网平台demo下载的方法,但下载的代码存在3个影响运行的问题,老猿将其总结了下,并给出了完善建议,大家按照建议进行处理,就能真正完成一个中文文本转语音的示例了。原创 2025-01-01 15:30:22 · 2761 阅读 · 3 评论 -
2024年11月18日-22日期间如果方便请大家帮忙投个票,谢谢啦!
星河杯投票链接原创 2024-11-18 11:02:35 · 290 阅读 · 0 评论 -
关于数据库多表查询内连接、外连接知识详解
本文结合相关案例介绍了数据库中内连接、外连接相关的概念及具体语法,包括隐内连接、显示内连接、自然连接、左外连接、右外连接、全连接,还包括部分支持的语法糖形式SQL语法。原创 2024-11-12 06:41:27 · 2416 阅读 · 0 评论 -
在统信操作系统下达梦8数据库配置unixodbc遇到的三个问题
本文介绍了在ARM+统信操作系统的机器上安装unixodbc适配达梦数据库遇到的三个问题,其中第一个问题是安装版本与机器环境不兼容,通过官网下载最新版本解决,第二个问题是由于找不到libodbcinst.so库文件,通过设置路径或拷贝libodbcinst.so到相关路径解决,第三个问题是由于配置的odbc.ini文件目录不对导致,调整目录即可。原创 2024-11-12 06:37:42 · 1020 阅读 · 0 评论 -
统信UOS下达梦数据库启动图形界面应用工具monitor报JAVA相关错:An error has occurred. See the log file
本文介绍了统信UOS下启动图形界面应用工具monitor由于JDK版本适配导致的报错:An error has occurred.的解决办法,避免该问题的解决办法是不单独安装JDK,而是要直接使用达梦数据库自带的JDK,并注意最终环境变量设置要指向达梦数据库自带JDK。原创 2024-10-30 21:30:30 · 1426 阅读 · 0 评论 -
统信UOS下启动达梦数据库图形界面应用工具manager报错:No protocol specified的解决办法
本文介绍了达梦数据库图形界面manager工具启动时报“No protocol specified”错的问题原因、解决办法,相关解决办法对其他达梦数据库图形工具类似问题同样有效。原创 2024-10-30 20:58:07 · 1417 阅读 · 0 评论 -
基于飞腾2000CPU+浪潮电脑+统信UOS安装达梦数据库详解
本文详细介绍了在基于飞腾2000CPU+浪潮电脑+统信UOS下载、安装达梦数据库的详细过程,相关操作是笔者结合官方文档在实际操作过程的详细总结,对照该文档,相信大家就可以在飞腾2000CPU+统信UOS机器上顺利安装达梦数据库。原创 2024-10-27 09:42:01 · 1514 阅读 · 1 评论 -
神经网络激活函数定义速查
本文简约介绍了神经网络常用的激活函数计算公式,可以用于不记得激活函数定义者速查。原创 2024-10-23 20:00:28 · 1254 阅读 · 0 评论 -
神经网络高级激活函数大全及keras中的函数定义
本文介绍了神经网络中常用的高级激活函数以及Keras中的具体函数,高级激活函数通常比基础激活函数更复杂,可能包含更多的参数或计算步骤,通常旨在解决基础激活函数的某些限制,如梯度消失或激活函数的非单调性。基础激活函数适用于大多数情况,但高级激活函数可能在特定任务或网络结构中表现更好。选择哪种激活函数通常取决于具体任务的需求、数据的特性以及实验的结果。在实践中,可能需要尝试不同的激活函数来找到最适合特定问题的激活函数。原创 2024-10-13 20:13:56 · 1447 阅读 · 0 评论 -
使用mnist数据集和LeakyReLU高级激活函数训练神经网络示例代码
本文介绍了使用mnist数据集和LeakyReLU高级激活函数训练神经网络示例代码,这个示例代码使用全连接层,激活函数在隐藏层使用的是LeakyReLU,输出层使用的是softmax。这个神经网络是比较简单的神经网络,根据训练后的测试情况,其识别精度接近98%。原创 2024-10-13 20:08:50 · 949 阅读 · 0 评论 -
神经网络激活函数列表大全及keras中的激活函数定义
在机器学习中,激活函数是神经网络中的一种函数,用于在神经网络的每个神经元中引入非线性。没有激活函数,神经网络就无法学习复杂的模式,因为线性变换的组合仍然是线性的。在Keras中,激活函数可以通过设置单独的 Activation 层实现,也可以在构造层对象时通过传递 activation 参数实现。本文介绍了11个激活函数,包括线性函数linear、线性指数激活函数elu、整流线性单元relu、可伸缩指数线性单元SELU、softmax函数、softplus函数、softsign函数、sigmoid函数、ha原创 2024-10-06 20:12:36 · 1772 阅读 · 0 评论 -
机器学习中的模型、策略和算法
本文介绍了机器学习方法的模型、策略和算法三要素的概念,模型就是所要学习的条件概率分布或决策函数,由决策函数表示的模型称为非概率模型,由条件概率表示的模型称为概率模型,模型存在于假设空间中。模型的假设空间有无穷多的模型,机器学习的目标就是要从假设空间中按一定的准则来学习或选择最优模型,这个准则就是学习的策略。策略是连接模型和算法的桥梁,它决定了如何使用算法来训练模型,以达到最佳的学习效果。策略涉及如何构建和训练模型,它包括损失函数的选择、正则化方法、学习速率的设定等,策略决定了模型的训练方式。策略有多种,其中原创 2024-09-22 10:44:41 · 1372 阅读 · 0 评论 -
Keras中initializers模块常见模型初始化方法详解
本文详细介绍了Keras中initializers模块常见模型初始化方法的含义,文章大部分内容来源于官网参考文档:[Keras初始化器的用法](https://keras-zh.readthedocs.io/initializers/) ,部分内容为笔者单独研究进行的补充,有助于深入理解各个初始化器的用法。最后使用keras提供了一个完整的简单模型进行训练的例子。原创 2024-09-12 08:29:35 · 1558 阅读 · 0 评论 -
人工智能基础概念4:似然函数、最大似然估计案例详解
本文结合详细的案例介绍了似然函数和最大似然估计的概念,并通过典型案例说明了最大似然估计的计算过程,有助于大家理解似然函数和最大似然估计。原创 2024-04-04 21:36:32 · 2258 阅读 · 1 评论 -
统计机器学习基础知识
本文介绍了机器学习的一些基础知识,机器学习是人工智能的一个分支,而借助于机器学习中的神经网络,通过多层神经网络进行知识学习的深度学习是机器学习领域中的一个重要研究方向。原创 2024-08-31 11:07:43 · 2013 阅读 · 0 评论 -
用蒙特卡罗积分法近似求解定积分的值及举例
本文介绍了蒙特卡罗积分法近似求解定积分的方法,并举例说明了具体使用方法。原创 2024-06-06 20:00:18 · 2383 阅读 · 2 评论 -
感知机学习算法中的Novikoff定理证明中的隐含背景知识
本文介绍了《统计学习方法》(李航著)第二章感知机学习中的Novikoff定理证明过程的隐含知识,好方便大家理解证明过程,相关知识总结起来就是两点,一是任何非零向量都可以标准化为模长为1的向量,二是对于线性映射函数,对权重向量进行标准化同时对截距进行相应变换后不影响映射函数其所表达的超平面,即权重向量标准化(含截距处理)前后所代表的超平面是同一个。原创 2024-04-21 20:42:08 · 1732 阅读 · 1 评论 -
秘塔和Kimi AI在资料查询和学习中的使用对比
本文对比了秘塔和Kimi AI在资料查询和学习中的使用情况,从个人的观点来看,Kimi从界面和内容检索总结上都优于秘塔,但老猿对秘塔的特点不是很了解,是否有其他隐藏技能不了解,因此进行的对比可能不全面,欢迎大家指正。原创 2024-04-16 20:13:50 · 6552 阅读 · 0 评论 -
非监督学习的模型为条件概率分布P(z|x)和p(x|z)的区别
P(z|x)给定输入 x 时,输出 z 的概率,p(x∣z) 给定输出 z 时,输入 x 的概率,这2种表示条件概率分布主要适合非监督学习的情况,但也可以在监督学习中适用,只是很少使用。原创 2024-04-16 07:35:44 · 1559 阅读 · 1 评论 -
统计学习的分类概述
本文介绍了统计学习的各种分类,按基本分类,统计学习可以分为监督学习、非监督学习、强化学习,有时还包括半监督学习、主动学习,按模型分类,分为概率模型和非概率模型,按算法分类分为了在线学习和批量学习,按技巧分类为贝叶斯学习和核方法。这些分类方法是从不同视角进行的,因此各种分类方法之间对应的学习方法又是交叉的,正所谓条条大路通罗马。原创 2024-04-13 21:30:27 · 2218 阅读 · 0 评论 -
关于机器学习中贝叶斯学习(Bayesian Learning)计算公式的理解
本文详细介绍了贝叶斯学习(Bayesian Learning)计算公式的各个组成因子的含义及所代表的意义,贝叶斯学习基于贝叶斯定理和概率论的原理计算在给定数据条件下模型的后验概率,并应用这个原理进行模型的估计以及对数据的预测。原创 2024-04-13 21:29:03 · 1591 阅读 · 0 评论 -
统计学习方法概述
本文是老猿学习《统计学习方法》(李航 著)一书的感悟和总结,大部分内容来源与书本,之所以将原文的大部分内容在博客中呈现,是因为老猿觉得这些内容对新人学习非常重要,会起到提纲挈领的作用。统计学习是处理海量数据的有效方法,是计算机智能化的有效手段,更是计算机科学发展的一个重要组成部分,对应计算机科学系统、计算、信息三个组成部分的信息这个部分。统计学习是基于数据构建概率统计模型从而对数据进行分析和预测,统计学习的三要素为模型(model)、策略(strategy)和算法(algorithm),模型是基础,定义原创 2024-04-13 08:35:38 · 1083 阅读 · 0 评论 -
解决在统信UOS Linux下缺乏zlib和jpeg库导致的安装Pillow报错问题
本文介绍了在统信UOS Linux下由于缺乏zlib和jpeg库导致的安装Pillow报错问题的解决过程和解决办法,之所以报错是因为缺省的统信UOS Linux未安装zlib和jpeg库导致的,只需要安装上述库即可解决。原创 2024-04-05 19:31:44 · 1793 阅读 · 0 评论 -
人工智能基础概念3:模型陷阱、过拟合、模型幻觉
本文介绍了模型陷阱中的过拟合、模型幻觉的概念以及二者的关系,可以看到过拟合、模型幻觉是两种不同概念,但二者又相互关联,过拟合会导致模型幻觉,模型幻觉也可能导致过拟合,二者都可能导致模型泛化能力差,但过拟合一般是型复杂度过高导致,模型幻觉更侧重于模型对于数据中的非实质性模式的错误理解。原创 2024-04-04 21:06:20 · 1398 阅读 · 0 评论 -
人工智能和机器学习概述
本文介绍了人工智能特别是机器学习的一些基础知识,机器学习是人工智能的一个分支,而借助于机器学习中的神经网络,通过多层神经网络进行知识学习的深度学习是机器学习领域中的一个重要研究方向。原创 2024-03-25 21:23:34 · 3145 阅读 · 2 评论 -
人工智能基础概念2:机器学习中的监督学习和非监督学习
机器学习根据训练数据是否标注分为监督学习和非监督学习,监督学习按标注的数据是否连续细分为分类和回归,非监督学习按用途可分为聚类和降维,不同的学习方式适合不同的应用场景。原创 2024-03-25 20:30:32 · 2508 阅读 · 0 评论 -
windows10下如何通过命令行方式新增一个外部WLAN的Wifi热点并连接
本文介绍了windows下如何通过命令行方式配置新增的热点、如何用命令行连接新增的热点的详细步骤。原创 2024-03-03 16:49:54 · 1691 阅读 · 2 评论 -
温故而知新:形态学图像处理的应用场景及原理
在原来的形态学变换系列博文中,老猿针对形态学变换进行了相关从基础概念、到程序实现等的一系列文章介绍,本次回顾这部分知识过程中,重点分析了形态学变换适用的场景及其背后的原因,有助于大家进一步理解形态学变换的原理和应用场景。原创 2024-02-19 20:34:28 · 583 阅读 · 1 评论 -
温故而知新:部分常见的图像数学运算处理算法的用途
本文将图像处理中常用的数学运算算法及其对图像的作用做了个汇总介绍,有助于图像处理时针对对应场景快速选择合适的数学算法。原创 2024-02-01 21:15:38 · 1920 阅读 · 0 评论