
统计学习方法基础知识
文章平均质量分 96
近几年AI知识的诸多术语和概念如监督学习、模型、回归等也逐渐为很多IT人所熟知,已悄然融入广大信息技术人员的知识体系之中,老猿才开始以为是AI的基础知识,学习后才知道它们有个专门的学科--统计学习,也称为统计机器学习,是机器学习领域的一个重要分支,这个专栏就是老猿学习相关知识的总结和感悟。
LaoYuanPython
CSDN 2020年博客之星TOP3。博客主要关注音视频剪辑、数字图像处理、图形界面开发等Python相关知识!
另有高数、图像处理、OpenCV、Python以及架构类等电子书,如需要请扫描博客左下部二维码加微公号咨询。
展开
-
统计学习方法概述
本文是老猿学习《统计学习方法》(李航 著)一书的感悟和总结,大部分内容来源与书本,之所以将原文的大部分内容在博客中呈现,是因为老猿觉得这些内容对新人学习非常重要,会起到提纲挈领的作用。统计学习是处理海量数据的有效方法,是计算机智能化的有效手段,更是计算机科学发展的一个重要组成部分,对应计算机科学系统、计算、信息三个组成部分的信息这个部分。统计学习是基于数据构建概率统计模型从而对数据进行分析和预测,统计学习的三要素为模型(model)、策略(strategy)和算法(algorithm),模型是基础,定义原创 2024-04-13 08:35:38 · 1084 阅读 · 0 评论 -
用蒙特卡罗积分法近似求解定积分的值及举例
本文介绍了蒙特卡罗积分法近似求解定积分的方法,并举例说明了具体使用方法。原创 2024-06-06 20:00:18 · 2384 阅读 · 2 评论 -
感知机学习算法中的Novikoff定理证明中的隐含背景知识
本文介绍了《统计学习方法》(李航著)第二章感知机学习中的Novikoff定理证明过程的隐含知识,好方便大家理解证明过程,相关知识总结起来就是两点,一是任何非零向量都可以标准化为模长为1的向量,二是对于线性映射函数,对权重向量进行标准化同时对截距进行相应变换后不影响映射函数其所表达的超平面,即权重向量标准化(含截距处理)前后所代表的超平面是同一个。原创 2024-04-21 20:42:08 · 1732 阅读 · 1 评论 -
非监督学习的模型为条件概率分布P(z|x)和p(x|z)的区别
P(z|x)给定输入 x 时,输出 z 的概率,p(x∣z) 给定输出 z 时,输入 x 的概率,这2种表示条件概率分布主要适合非监督学习的情况,但也可以在监督学习中适用,只是很少使用。原创 2024-04-16 07:35:44 · 1559 阅读 · 1 评论 -
统计学习的分类概述
本文介绍了统计学习的各种分类,按基本分类,统计学习可以分为监督学习、非监督学习、强化学习,有时还包括半监督学习、主动学习,按模型分类,分为概率模型和非概率模型,按算法分类分为了在线学习和批量学习,按技巧分类为贝叶斯学习和核方法。这些分类方法是从不同视角进行的,因此各种分类方法之间对应的学习方法又是交叉的,正所谓条条大路通罗马。原创 2024-04-13 21:30:27 · 2218 阅读 · 0 评论 -
关于机器学习中贝叶斯学习(Bayesian Learning)计算公式的理解
本文详细介绍了贝叶斯学习(Bayesian Learning)计算公式的各个组成因子的含义及所代表的意义,贝叶斯学习基于贝叶斯定理和概率论的原理计算在给定数据条件下模型的后验概率,并应用这个原理进行模型的估计以及对数据的预测。原创 2024-04-13 21:29:03 · 1591 阅读 · 0 评论