
人工智能数学基础
文章平均质量分 94
介绍人工智能学习相关的数学知识,从最基础的三角函数、指数、对数到单调有界定理、级数、极数以及导数、微积分等循序渐进。
LaoYuanPython
CSDN 2020年博客之星TOP3。博客主要关注音视频剪辑、数字图像处理、图形界面开发等Python相关知识!
另有高数、图像处理、OpenCV、Python以及架构类等电子书,如需要请扫描博客左下部二维码加微公号咨询。
展开
-
人工智能数学基础专栏目录
☞ ░ 前往老猿Python博文目录 ░本专栏为人工智能数学基础,即将转为付费专栏,但“老猿Python”的微信公众号将免费发布。本专栏包含如下内容:一、数学基础知识人工智能数学基础1:三角函数的定义、公式及固定角三角函数值人工智能数学基础2:指数、方根及对数运算公式人工智能数学基础3:部分数学符号以及自然数、整数、有理数和实数的势人工智能数学基础4:离差、平均差、方差、标准差、协方差、皮尔森相关系数人工智能数学基础5:单调有界定理人工智能数学基础6:无穷大和无穷小的大小比较以及斯特林公式原创 2021-01-02 07:25:27 · 2646 阅读 · 2 评论 -
人工智能数学基础--概率与统计15:多维随机变量/向量
本文介绍了多维随机向量的概念和其概率密度函数定义以及边缘分布的定义,并举例说明了多项分布、均匀分布、正态分布等多维随机向量的典型分布。多维随机向量也分为离散型和连续型两种,其边缘分布就是一种普通的分布,只是将其中一个分量或多个分量看做变量其余分量是全域积分所得到的分布,因此边缘分布可以是一维的,也可以是多维的。与边缘分布相对应,多维随机向量也被称为**联合分布**。原创 2023-07-17 21:05:08 · 1525 阅读 · 0 评论 -
连续随机向量的概率密度函数f(x1,...,xn)可以表示为n个相互独立函数g(x1)...g(xn)之积则其各个分量Xi相互独立推导过程中的关于C1...Cn=1的问题
连续随机向量的概率密度函数f(x1,...,xn)可以表示为n个相互独立函数g(x1)...g(xn)之积则其各个分量Xi相互独立推导过程中的关于C1...Cn=1的问题原创 2022-12-28 21:12:36 · 1017 阅读 · 0 评论 -
人工智能数学基础--概率与统计14:连续随机变量的指数分布、威布尔分布和均匀分布
本文是老猿学习中国科学技术大学出版社出版的陈希孺老先生的《概率论与数理统计》的总结和思考,在文中介绍了指数分布、威布尔分布和均匀分布的概念,以及其中一些推导过程,在文中根据老猿自己的理解补充说明了一些推导过程。原创 2022-12-04 17:16:26 · 5706 阅读 · 3 评论 -
人工智能数学基础--概率与统计12:连续随机变量的概率密度函数以及正态分布
本文介绍了连续随机变量概率分布及概率密度函数的概念,并介绍了连续随机变量一个重要的概率密度函数:正态分布的概率密度函数的定义以及推导、使用场景。原创 2022-11-30 21:00:55 · 1588 阅读 · 0 评论 -
人工智能数学基础--概率与统计13:连续随机变量的标准正态分布
本文是老猿学习中国科学技术大学出版社出版的陈希孺老先生的《概率论与数理统计》的总结和思考,标准正态分布N(0,1)是正态分布N(u,σ²)的特例,本文介绍了标准正态分布的由来、正态分布转换成标准正态分布的方法以及标准正态分布函数值表和应用案例。原创 2022-12-01 21:01:39 · 2345 阅读 · 1 评论 -
人工智能数学基础--概率与统计11:离散随机变量的超几何分布和负二项分布
本文介绍了离散随机变量的超几何分布、负二项分布、几何分布的概念,以及相关的公式推导,从介绍可知,他们与二项分布有密切的关系。原创 2022-11-19 13:44:47 · 1529 阅读 · 0 评论 -
人工智能数学基础--概率与统计10:离散随机变量的概率函数及常见的二项分布、泊松分布
本文介绍了离散随机变量的概率函数、概率分布的定义,并介绍了两个很重要的离散随机变量的概率分布:二项分布和泊松分布,实际上泊松分布是二项分布的极限形式。原创 2022-11-17 21:38:03 · 1721 阅读 · 0 评论 -
由二项分布推导泊松分布中的两个使用公式的证明
泊松分布由二项分布推导出来的连个使用公式的推导过程。原创 2022-11-16 07:33:47 · 1547 阅读 · 0 评论 -
Markdown编辑器模式使用LaTex编辑数学公式入门
本文介绍了在markdown编辑器中能直接使用的LaTex数学公式编辑的几种基本用法(当然也可以用于其他LaTex数学公式编辑器),包括分隔符、关键字、分数、指数、上下标、开n次方、求极限、积分以及字体大小和空格、空行控制,对于一个需要使用LaTex来编辑基本数学公式的小白来说足够了,如果想了解更多可以参考《[LaTeX公式编辑器帮助文档](https://www.latexlive.com/help)》。原创 2022-11-14 20:29:44 · 2492 阅读 · 1 评论 -
人工智能数学基础--概率与统计9:概率运算、加法公理、事件的独立性、概率乘法定理、条件概率、全概率公式以及贝叶斯公式
本文结合陈希孺老先生的概率论教材介绍了事件的互斥、独立的概念,概率的运算法则,互斥事件的加法定理、独立事件的乘法定理以及条件概率的定义以及由此推导出来的完备事件群的全概率公式和贝叶斯公式,最后介绍了贝叶斯公式在解决实际问题中的应用。原创 2022-10-15 18:13:16 · 1537 阅读 · 0 评论 -
人工智能数学基础--概率与统计0:概率是什么
介绍概率的基础定义,以及几种概率的说明。原创 2022-09-24 20:54:06 · 1106 阅读 · 1 评论 -
人工智能数学基础--概率与统计8:一个很有意思的下棋输赢概率问题
本文是根据陈希孺版《概率论与数理统计》《第一章事件的概率》结合老猿自己的理解介绍的,大部分内容来自书中原文,但补充了两方面的内容,一是求甲胜的概率的等比数列求和式子的结果的计算原理,二是求乙胜的每种情况的概率计算过程和结果。这个例子值得细心品味。第一,它提供了一个涉及无限个事件的情况(在甲最终取胜前可以经过任意多的“阶段”),以及在无穷个事件时使用概率加法定理。第二,本例告诉我们,在面对一个复杂事件时,主要的方法是冷静地分析,以设法把它分拆成一些互斥的简单情况。这里,必须细心确保互斥性又无遗漏,一着不慎原创 2022-07-08 07:16:05 · 1362 阅读 · 3 评论 -
转载:等比数列的求和公式,及其推导过程
介绍等比数列的概念和求和的公式以及推导过程。因为等比数列求和公式中,公比等于1和公比不等于1的前n项和所适用的求和公式不同,所以求等比数列的前n项和时,往往需要对其公比是否等于1进行分类讨论。......转载 2022-07-03 10:10:33 · 101849 阅读 · 1 评论 -
人工智能数学基础--概率与统计7:学习中一些术语的称呼或表示变化说明以及独立事件的一些补充推论
介绍专栏内一些术语的表述变化以及独立事件的一些补充推论原创 2022-06-28 07:29:15 · 986 阅读 · 2 评论 -
人工智能数学基础--概率与统计6:关于概率统计中的排列组合
介绍概率统计中的排列组合。原创 2022-06-08 20:48:39 · 2228 阅读 · 4 评论 -
人工智能数学基础--概率与统计5:独立随机变量和变量替换
本文介绍了离散和连续独立随机变量的概念,以及存在一一映射关系的两个随机变量或两组随机变量之间的概率密度函数之间的关系。f(x,y)=f1(x)f2(y) (28)相反地,若对所有的x和y,联合概率函数f(x,y)能够表成一个变量x的函数与一个变量y的函数的乘积(则它们是X和Y的边缘概率函数),则X和Y是独立的。若f(x,y)不能这样表示,则X和Y是不独立的。若X和Y是连续的随机变量,对所有的x和y事件X.原创 2022-05-16 20:23:07 · 2167 阅读 · 1 评论 -
人工智能数学基础--概率与统计3:随机变量与概率分布
本文介绍了概率统计中的随机变量及概率分布的概念,包括离散随机变量和连续随机变量的概率函数及分布函数,都是概率统计的入门知识。原创 2022-04-10 19:25:17 · 2366 阅读 · 1 评论 -
人工智能数学基础--概率与统计2:排列组合的表示方法、二项式系数及斯特林近似
本文介绍了概率统计排列组合、二项式系数知识以及斯特林近似表示,都是概率统计的入门知识。原创 2022-03-20 16:19:14 · 6765 阅读 · 3 评论 -
人工智能数学基础--概率与统计1:随机试验、样本空间、事件、概率公理定理以及条件概率和贝叶斯法则
本文介绍了概率统计包括随机试验、样本空间、事件、概率公理定理以及条件概率和贝叶斯法则在内的一些基础知识,都是概率统计的入门知识,要理解起来还是比较容易的,但是熟练掌握应用还需要多应用。原创 2022-03-14 08:10:19 · 6024 阅读 · 1 评论 -
数字图像直方图处理涉及的数学知识介绍
本文介绍了直方图处理相关的直方图知识、概率统计知识,要真正理解直方图处理还需要属性导数、微分和不定积分相关的概念以及计算公式。原创 2021-08-25 22:48:32 · 2398 阅读 · 7 评论 -
人工智能数学基础:两个存在映射关系的随机变量的概率密度函数关系研究
本文介绍了两个存在映射关系的随机变量的概率密度函数之间的关系,并利用概率论和微积分的相关知识介绍了推导过程。原创 2021-08-23 21:50:30 · 3665 阅读 · 10 评论 -
人工智能数学基础---定积分9:无界函数反常积分审敛法以及无界函数Γ函数介绍
本文介绍了无界函数反常积分的比较审敛法和极限审敛法,以及特殊的无界函数Γ函数,以及Γ函数的一些特殊属性。原创 2021-08-15 23:05:30 · 8671 阅读 · 12 评论 -
人工智能数学基础---定积分8:无穷限反常积分审敛法
本文介绍了连续函数在无穷限(这里说的无穷限是指[a,+∞))区间的反常积分收敛性判断的几个方法,包括判断函数值大于等于0且有界、比较审敛原理、比较审敛法1、极限审敛法1以及绝对收敛法等,通过这些方法可以脱离原函数来判断无穷限反常积分是否收敛。原创 2021-08-15 13:21:27 · 9074 阅读 · 6 评论 -
人工智能数学基础---定积分7:无界函数的反常积分计算
本节介绍了无界函数的反常积分概念,三种无界函数反常积分在瑕点的极限值如果存在,则无界函数的反常积分存在且收敛,同样可以利用牛顿-莱布尼茨公式进行计算则无界函数的反常积分,否则该反常积分发散,无法求出。实际上无论是无穷限函数还是无界函数,其反常积分如果存在,都可以通过求被积函数的原函数,然后按定义取极限,通过计算极限结合牛顿-莱布尼茨公式计算出最终结果。原创 2021-08-12 21:28:11 · 11810 阅读 · 5 评论 -
人工智能数学基础---定积分6:无穷限函数的反常积分计算
本节介绍了无穷限的反常积分的概念,函数f(x)在无穷区间(-∞,0]、[0,∞)以及(-∞,+∞)上的三种反常积分统称为无穷限的反常积分,这种反常积分当其无穷限对应的积分函数极限存在则可以利用牛顿-莱布尼茨公式进行计算,如果对应无穷限的积分函数极限值不存在,则该反常积分发散,无法求出。原创 2021-08-12 19:48:43 · 13438 阅读 · 4 评论 -
人工智能数学基础---定积分5:使用分部积分法计算定积分
本节介绍了定积分的分部积分公式,并举例介绍了分部积分发计算定积分的具体过程,定积分的分部积分公式表明,原函数已经积出部分可以先用上、下限代入进行计算。原创 2021-08-11 21:08:01 · 15761 阅读 · 7 评论 -
人工智能数学基础---定积分4:使用换元法计算定积分
本节介绍了定积分的换元公式,并举例介绍了通过换元法计算定积分的具体过程,需要注意,定积分计算时一定要关注不同积分区间可能原函数不同的情况。原创 2021-08-11 19:08:48 · 4699 阅读 · 8 评论 -
人工智能数学基础---定积分3:微积分基本公式(牛顿-莱布尼茨公式)
本节介绍了积分上限函数,通过积分上限函数证明了微积分基本公式(牛顿-莱布尼茨公式),牛顿-莱布尼茨公式表明一个连续函数在区间[a,b]上的定积分等于它的任何一个原函数在区间[a,b]上的增量。由于牛顿-莱布尼茨公式表明了定积分和不定积分的关系,因此可以用于定积分的精确计算。原创 2021-08-10 23:04:29 · 8692 阅读 · 26 评论 -
人工智能数学基础---定积分2:定积分的性质
本文介绍了定积分的性质,包括线性组合运算、保号性、区间可加性、积分中值定理等。原创 2021-08-08 23:10:29 · 9584 阅读 · 13 评论 -
人工智能数学基础---定积分1:定积分的概念以及近似计算
本文介绍了定积分的概念、几何意义、用定义来求定积分的案例以及使用矩形法、梯形法和抛物线法求定积分近似值的方法和案例,需要注意定积分的近似计算方法还有很多,现在一些数学软件也支持定积分的近似计算,大家可以根据具体运算需要确定将积分区间等分份数以及近似计算方法来具体运用。原创 2021-08-07 17:55:55 · 5192 阅读 · 13 评论 -
人工智能数学基础---不定积分5:常用不定积分表
本文转录了常用不定积分的计算公式,求积分时,可以按照被积函数类型直接或经过简单的变形后,在表内查得所需的计算公式,从而就可以简便的求出积分。一般来说,查积分表可以节约计算积分的时间,但是,只有掌握基本积分方法才能比较灵活地使用积分表,而且对一些简单的积分,应用基本积分方法比查表可能更快。求积分时,究竟是查表还是直接计算,或者两者结合使用,应该具体分析,不能一概而论。原创 2021-08-05 19:54:45 · 17188 阅读 · 7 评论 -
人工智能数学基础---不定积分4:有理函数求积分的方法
本文介绍了有理函数的概念及有理函数求积分的方法,并对于类似有理函数的三角函数形式的被积函数和带根式的被积函数,通过适当地换元变换化为有理函数求积分。原创 2021-08-05 18:44:41 · 4932 阅读 · 4 评论 -
人工智能数学基础---不定积分3:分部积分法
本节介绍了分布积分法以及对应的**分部积分公式**,其核心思想是针对两个单独可以求不定积分的函数,二者的乘积求不定积分如果有困难,可以尝试将其中一个函数看做其原函数v的导数,这样两个函数的乘积的不定积分就变成了一个函数的原函数v的导数与另一个函数u的乘积的不定积分,从而可以尝试利用公式3-1来转换成函数u和函数v的乘积减去u的导数和v的乘积的不定积分的差。原创 2021-08-03 20:37:20 · 8810 阅读 · 12 评论 -
人工智能数学基础--不定积分2:利用换元法求不定积分
本文介绍了三种换元法求不定积分的方法及案例,但具体解题时要分析被积函数的具体情况,选取尽可能简捷的代换,不要拘泥于特定的变量代换。原创 2021-07-23 21:38:24 · 8208 阅读 · 16 评论 -
人工智能数学基础--不定积分1:概念与性质
本文介绍了不定积分的概念、性质以及基本的不定积分表。原创 2021-07-22 21:52:54 · 2178 阅读 · 14 评论 -
一元函数中的导数、微分和不定积分的关系
本文分析了导数、微分和不定积分之间的关系,分析不一定正确,发出来请大家指正。原创 2021-07-22 21:49:02 · 7151 阅读 · 2 评论 -
人工智能数学基础:利用导数判断函数单调性、凹凸性、极值、最值和描绘函数图形
本文介绍了利用导数判断函数单调性、凹凸性、极值相关的概念和定理,通过本文的介绍,可以熟悉通过导数判断函数单调性、凹凸性、极值以及求最值的原理和方法。最后,通过一阶导数和二阶导数确定了函数的单调性、凹凸性、极值点之后,就可以描绘出函数的几何图形。原创 2021-07-17 21:00:43 · 9045 阅读 · 16 评论 -
人工智能数学基础:泰勒(Taylor)公式
本文介绍了2个泰勒中值定理,泰勒中值定理1是将在某点具有n+1阶导数的函数表示为一个多项式加个余量的形式,泰勒中值定理2则将泰勒中值定理1的余量进行了细化。通过拉格朗日余项的n阶泰勒公式和带有拉格朗日余项的麦克劳林公式,可以将一个函数表示成n项的n阶多项式,从而为函数后续的运算提供便利。原创 2021-07-16 21:29:34 · 7281 阅读 · 12 评论 -
理解泰勒中值定理1的证明过程的两个影响理解的简单隐含推导
本文介绍了泰勒中值定理1的证明过程理解的两个隐含推导过程,要真正理解该推导过程要对导数的知识真正做到融会贯通。原创 2021-07-13 22:05:29 · 4723 阅读 · 7 评论