
图像处理基础知识
文章平均质量分 94
记录老猿作为一个图像小白学习图像处理过程中发现的一些必须了解的图像基础知识,有助于同样的图像小白同好了解图像相关基础知识。
LaoYuanPython
CSDN 2020年博客之星TOP3。博客主要关注音视频剪辑、数字图像处理、图形界面开发等Python相关知识!
另有高数、图像处理、OpenCV、Python以及架构类等电子书,如需要请扫描博客左下部二维码加微公号咨询。
展开
-
《图像处理基础知识》专栏文章目录
☞ ░ 前往老猿Python博客 https://blog.csdn.net/LaoYuanPython ░一、专栏简介《图像处理基础知识》专栏介绍老猿在图像处理知识学习中的一些基础知识总结和感悟,但不包括OpenCV-Python相关知识,OpenCV-Python相关知识请见《OpenCV-Python图形图像处理》,供与老猿同样零基础图像知识的同好参考。二、文章目录图像灰度与灰阶的纠结:gray level/scale译文释义图像处理术语解释:灰度、色相、饱和度、亮度、明度、阿尔法通道原创 2021-05-26 22:10:56 · 2143 阅读 · 22 评论 -
温故而知新:形态学图像处理的应用场景及原理
在原来的形态学变换系列博文中,老猿针对形态学变换进行了相关从基础概念、到程序实现等的一系列文章介绍,本次回顾这部分知识过程中,重点分析了形态学变换适用的场景及其背后的原因,有助于大家进一步理解形态学变换的原理和应用场景。原创 2024-02-19 20:34:28 · 584 阅读 · 1 评论 -
温故而知新:部分常见的图像数学运算处理算法的用途
本文将图像处理中常用的数学运算算法及其对图像的作用做了个汇总介绍,有助于图像处理时针对对应场景快速选择合适的数学算法。原创 2024-02-01 21:15:38 · 1920 阅读 · 0 评论 -
温故而知新:直方图均衡、直方图匹配的再次理解
本文针对笔者复习直方图均衡和匹配的知识的一些思考进行了说明,直方图均衡扩展可图像的灰度级(intensity scale)范围、增强了图像的对比度,而直方图匹配则使得图像具有与目标图像或指定直方图要求的对比度和亮度特性。原创 2024-01-19 20:55:06 · 1697 阅读 · 1 评论 -
统信UOS Linux环境下安装OpenCV遇到的各种问题及填坑指南
本文详细介绍了在统信UOS的linux操作系统环境下安装opencv库和构建opencv C++应用的编译环境过程中遇到的各种问题,通过解决这些问题,就可以最终成功安装opencv库和执行opencv C++应用的编译和测试了。原创 2024-01-02 02:30:00 · 2953 阅读 · 3 评论 -
信创之国产浪潮电脑+统信UOS操作系统体验11:统信UOS Linux下绕开github下载和编译OpenCV并构建C++应用编译环境的过程详解
本文详细介绍了在统信UOS的linux操作系统环境下安装opencv库和构建opencv C++应用的编译环境的详细过程,通过下载安装包、调整cmake文件、执行cmake和make以及安装,调整环境变量等,最终构建了可以编译opencv C++应用程序的环境。上述安装过程是老猿反复多轮测试之后总结出来的,其实在测试过程中中遇到了各种问题,通过解决这些问题,才最终成功.原创 2024-01-02 02:00:00 · 3535 阅读 · 3 评论 -
数字图像处理学习--导数运算与锐化空间滤波
本文介绍了图像锐化空间滤波器的基本概念,定义了数字图像处理一阶导和二阶导的公式,以及锐化处理与数字图像函数导数的关系,通过介绍,可以理解数字图像的二阶导数比较适合图像锐化处理。原创 2022-03-07 19:52:57 · 5629 阅读 · 4 评论 -
数字图像处理中一元函数f(x)的二阶导数=f(x+1)+f(x-1)-2f(x)的由来
介绍数字图中f(x)的二阶导数的由来。原创 2022-03-06 10:11:56 · 1555 阅读 · 1 评论 -
灰度斜坡intensity ramp和灰度台阶intensity step的区别
介绍灰度斜坡和灰度台阶的概念及区别。原创 2022-03-05 12:42:36 · 1062 阅读 · 4 评论 -
一阶导数/微分和二阶导数/微分算子在图像锐化处理方面的区别
一阶导数/微分和二阶导数/微分算子对图像处理的区别:斜坡面上,灰度线性增加,因灰度持续增加因此一阶导数一直不为0 ;二阶导数只有终点和起点不为0;一阶导数产生较粗的边缘,只要灰度有变化都会显现;二阶导数则细得多,只有灰度有强烈变化,灰度变化非线性的地方才显现;一阶导数处理一般对灰度阶梯有较强的响应,因为灰度阶梯处的灰度值变化范围大,因此一级导数值就大;二阶导数求图像灰度变化导数的导数,反映的是变化后的起伏,变化幅度不一致的地方才有响应,对图像中灰度变化强烈的地方很敏感,从而可以突出图像的纹理结构,.原创 2022-03-05 11:07:42 · 3241 阅读 · 2 评论 -
为什么说数字图像的一阶微分为f(x+1)-f(x)?
本文分析了数字图像处理中为什么一阶微分为f(x+1)-f(x)的由来。原创 2022-03-04 07:11:59 · 1770 阅读 · 5 评论 -
为什么说图像均值处理与积分类似?
本文分析图像线性空间滤波(均值处理)为什么说与积分类似。原创 2022-02-27 18:44:01 · 1754 阅读 · 4 评论 -
数字图像处理:线性和非线性滤波的平滑空间滤波器(Smoothing Spatial Filters)
本文介绍了线性滤波和非线性滤波的概念、作用以及应用示例,可以看到线性滤波和非线性滤波都有不错的应用场景,线性滤波器还可以有不同的系数,不同的波器的模板大小取决于要处理图像的目标,特定的模板对特定的噪声有比较好的作用,如线性滤波比较适合随机噪声,中值滤波适合椒盐噪声的处理。原创 2022-02-15 20:47:17 · 12950 阅读 · 22 评论 -
《数字图像处理》空间滤波学习感悟2:空间相关与卷积的概念、区别及联系
本文介绍了空间滤波中的两个重要基础概念:相关和卷积,并介绍了使用两个公式表述这两个操作,无论是哪种表示,都可以通过简单的旋转滤波器去执行相关或卷积的功能。在空间滤波任务中,重要的是按期望操作的方式来确定滤波器模板。在图像处理文献中,经常使用卷积滤波器(convolution filter)、卷积模板(convolution mask )或卷积核( convolution kernel)这些术语,按照惯例,这些术语都是用于表示一种空间滤波器(spatial filter),并且该滤波器不一定真正用于卷积处理原创 2022-01-12 22:25:57 · 8279 阅读 · 2 评论 -
《数字图像处理》空间滤波学习感悟1:空间滤波原理
本文介绍了空间滤波的原理,空间滤波器由一个邻域和对该邻域包含的图像像素执行的预定义操作组成。空间滤波产生一个新像素,新像素的坐标等于邻域中心的坐标,像索的值是滤波操作的结果。通过滤波器的中心访问输人图像中的每个像素,就生成了处理(滤波)后的图像。原创 2022-01-09 11:51:23 · 10495 阅读 · 6 评论 -
转载:一文讲解图像插值算法原理
本文梳理了最近邻插值法、双线性插值法和三次样条插值法的原理,并以图像缩放为例,对原理进行了C++及Python实现。转载 2021-11-05 08:22:31 · 8256 阅读 · 4 评论 -
数字图像处理:OpenCV-Python中的直方图均衡知识介绍及函数equalizeHist详解
本文介绍了OpenCV官方提供的直方图均衡原理、算法及算法实现样例,以及OpenCV-Python中的直方图均衡函数equalizeHist的调用语法、参数及返回值说明、处理过程描述,最后提供了一个使用equalizeHist函数对经典的两张直方图均衡样例图的处理代码和处理效果。通过相关内容的介绍,有助于大家理解直方图均衡的原理、算法及OpenCV中的处理方法。原创 2021-10-10 01:30:00 · 8919 阅读 · 3 评论 -
数字图像处理:图像直方图基础知识介绍
本文介绍了直方图概念及属性、图像直方图的概念、特点及应用。原创 2021-09-25 21:15:45 · 10391 阅读 · 0 评论 -
数字图像处理:使用直方图统计进行图像增强
本文介绍了使用直方图相关的统计信息进行图像增强的背景和处理方法,使用直方图统计进行图像增强通过挑选局部的对比对度相对全局图像低的暗区域,对这些满足条件的局部区域将其灰度值直接扩大E倍,从而使得整幅图像整体效果没有大的变化的前提下,增强图像暗区域的细节。原创 2021-09-20 23:31:14 · 6361 阅读 · 2 评论 -
数字图像处理:局部直方图处理(Local Histogram Processing)
☞ ░ 前往老猿Python博文目录 https://blog.csdn.net/LaoYuanPython ░一、引言在前面章节《《数字图像处理》直方图均衡学习总结+感悟》、《数字图像直方图匹配或规定化Histogram Matching (Specification)处理》介绍了直方图均衡处理和直方图,二者都是基于整幅图像的灰度分布(intensity distribution)直方图来进行的,因此说这两种直方图处理方式都是全局性的(global)。 尽管这种全局方法适用于整个图像的增强(over.原创 2021-09-19 22:08:38 · 10475 阅读 · 4 评论 -
数字图像直方图匹配或规定化Histogram Matching (Specification)处理
本文介绍了连续图像和数字图像直方图匹配(直方图规定化)的原理、处理过程,并提供了案例进行了讲解。可以看到,直方图均衡处理是直方图匹配的一个重要桥梁。最后,对于直方图规定化这个翻译个人觉得很low,个人感觉叫指定直方图更好理解,但Histogram Specification怎么翻译确实不太好把握,因此还是叫Histogram Matching直方图匹配最好。原创 2021-09-11 00:03:14 · 15199 阅读 · 5 评论 -
数字图像直方图处理涉及的数学知识介绍
本文介绍了直方图处理相关的直方图知识、概率统计知识,要真正理解直方图处理还需要属性导数、微分和不定积分相关的概念以及计算公式。原创 2021-08-25 22:48:32 · 2398 阅读 · 7 评论 -
人工智能数学基础:两个存在映射关系的随机变量的概率密度函数关系研究
本文介绍了两个存在映射关系的随机变量的概率密度函数之间的关系,并利用概率论和微积分的相关知识介绍了推导过程。原创 2021-08-23 21:50:30 · 3665 阅读 · 10 评论 -
数字图像处理:直方图均衡(Histogram Equalization)的原理及处理介绍
本文介绍了《数字图像处理》第三章直方图均衡的主要知识点,直方图均衡法针对非数字图像以及数字图像都存在通用的公式,只需要数字图像和非数字图像自身的信息,二者虽然由于灰度值连续和离散的不同公式有所不同,但本质是一致的。本文的介绍是完全基于《数字图像处理》的介绍,其中有些内容对于不熟悉数字图像处理的人员理解可能存在困难,请等待老猿后续的系列博文答疑解惑。原创 2021-08-22 22:34:16 · 15751 阅读 · 16 评论 -
《数字图像处理》第三章学习总结感悟2:直方图处理
☞ ░ 前往老猿Python博文目录 https://blog.csdn.net/LaoYuanPython ░一、引言在2021年6月22日发布《《数字图像处理》第三章学习总结感悟1:灰度变换与空间滤波概念及常用灰度变换方法介绍》之后,老猿就暂停了数字图像处理的学习,而是开始重新学习(本来应该是复习,可是以前的高数知识完全忘光了)高数中的导数、微分、不定积分和定积分相关知识,主要是因为在学习直方图处理中碰到了定积分相关的知识,而这些知识老猿一点概念都没有了。不过总算是过来了,今天我们继续开始图像处理.原创 2021-08-22 22:01:24 · 5059 阅读 · 5 评论 -
用Python+PIL将多个jpg图像批量合并成一个pdf文件
本文介绍了使用Python+PIL库将多个图片合并成一个PDF文件的方法。原创 2021-07-22 07:33:35 · 5775 阅读 · 17 评论 -
用Python+PIL将目录下jpg图像批量转成pdf文件
本文介绍了通过PIL图像处理库,批量将jpg等图像文件转成pdf文件的方法,并提供了完整实现代码。上述方法不仅适用于jpg图像文件,也适用于所有pil支持的图像文件,不过关于图像文件的匹配要稍微调整下。原创 2021-07-19 21:00:03 · 4940 阅读 · 25 评论 -
《数字图像处理》第三章学习总结感悟1:灰度变换与空间滤波概念及常用灰度变换方法介绍
本部分主要对应第三章《3.1节 背景知识》和《3.2节 一些基本的灰度变换函数》,介绍了空间域、灰度变换、空间滤波、邻域的概念,结合案例介绍了灰度变换中的图像反转、对数变换、幂律变换、分段线性变换的原理和用途。通过学习这些基本的概念,老猿第一次系统地理解了灰度变换,灰度变换大部分都是通过拉伸或压缩图像某些灰度值范围来提高图像的整体效果,对于提高图像的可辨识性具有重要的意义,这些简单的变换可以带来图像认知的质的提升。原创 2021-06-22 21:07:10 · 7389 阅读 · 62 评论 -
图像滤波基础知识:图像与波的关系以及图像噪声知识
本节介绍了图像处理中图像与波的关系,由于图像灰度值或通道值在各位置的值联合起来看象波,同时数字图像的成像的辐射源也是各种波,因此图像处理和波关系密切,滤波处理其实就是对图像的各像素的灰度值或通道值幅度的处理。图像采集、传输和量化过程中会产生各种噪声,图像噪声是指存在于图像数据中的不必要的或多余的干扰信息。图像噪声的有多种分类方法,在不同处理中会用到不同分类方法。原创 2021-06-14 07:05:28 · 44752 阅读 · 44 评论 -
《数字图像处理》学习总结及感悟:第二章数字图像基础(5)数学工具
本节概要性地介绍了图像处理所使用的数学工具,包括阵列与矩阵操作、线性操作和非线性操作、算术操作、集合和逻辑操作、空间操作、向量与矩阵操作、图像变换和概率方法。原创 2021-06-06 10:02:13 · 3985 阅读 · 35 评论 -
《数字图像处理》学习总结及感悟:第二章数字图像基础(4)像素间的关系
本文介绍了图像中像素的邻域关系,通过邻域关系中基于限定灰度值的集合定义了邻接关系,通过邻接可以构建像素间的通路,基于通路构建了像素间的连通关系和连通集,并进一步定义了图像的区域和边界。如果一个函数满足图像像素间距离度量的定义,则该函数就是一个距离函数或距离度量,常见的距离有欧式距离、D4距离、D8距离。通过这些内容的介绍,可以使得大家了解像素间的邻域、邻接、连通关系以及区域和边界的定义,明白像素间不同距离度量的距离计算方法。原创 2021-05-31 21:11:46 · 10521 阅读 · 37 评论 -
转载:图像滤波概念知识解释
注:本文转自大神阮一峰的网络日志《图像与滤波》我对图像处理一直很感兴趣,曾经写过好几篇博客(1,2,3,4)。前几天读到一篇文章,它提到图像其实是一种波,可以用波的算法处理图像。我顿时有一种醍醐灌顶的感觉,从没想到这两个领域是相关的,图像还可以这样玩!下面我就来详细介绍这篇文章。一、为什么图像是波?我们知道,图像由像素组成。下图是一张 400 x 400 的图片,一共包含了 16 万个像素点。每个像素的颜色,可以用红、绿、蓝、透明度四个值描述,大小范围都是0 ~ 255,比如黑色是[0, 0,转载 2021-03-25 21:16:54 · 2884 阅读 · 2 评论 -
转载:图像噪声的成因分类与常见图像去噪算法简介
本文转载自:图像噪声的成因分类与常见图像去噪算法简介 1、图像噪声的成因 图像在生成和传输过程中常常因受到各种噪声的干扰和影响而是图像降质,这对后续图像的处理和图像视觉效应将产生不利影响。噪声种类很多,比如:电噪声,机械噪声,信道噪声和其他噪声。因此,为了抑制噪声,改善图像质量,便于更高层次的处理,必须对图像进行去噪预处理。 2、图像噪声的特征 图像噪声使得图像模糊,甚至淹没图像特征,给分析带来困难。 图像噪声一般具有以下特点: 噪声在图像中的分布和大小不规则,即具有随机转载 2021-04-03 13:11:30 · 11363 阅读 · 0 评论 -
数字图像处理:理解什么是卷积(滤波)、卷积核以及相关参考资料
本文使用简要的语言及图像介绍了卷积(滤波)和卷积核的概念及卷积处理过程,有助于不了解卷积的初学者快速理解相关概念。同时提供了可以进一步查阅的参考文档,方便大家更深入理解卷积。原创 2020-09-28 20:52:45 · 12122 阅读 · 2 评论 -
图形图像学习随笔:计算机图形学的一些基本概念
本文内容摘抄于:《计算机图形学的概念》1、图形主要分为两类,一类是基于线条信息表示的,如工程图、等高线地形图、曲面的线框图等;另一类是明暗图,也就是通常所说的真实感图形;2、计算机图形学利用计算机建立图形所描述的场景和物体的几何表示,再用某种光照模型计算在假想的光源、纹理、材质属性下的光照明效果;3、数字图像强调计算机内以位图(Bitmap)形式存储的灰度信息;而计算机图形则强调景物的几何属...转载 2020-05-06 22:05:37 · 5695 阅读 · 0 评论 -
图像处理术语解释:什么是PRGBA和Alpha预乘(Premultiplied Alpha )
☞ ░ 前往老猿Python博文目录 ░Alpha预乘(Premultiplied Alpha)和PRGBA一般来说四通道图像数据保存的都是ARGB或RGBA,其R、G、B值还没有进行任何透明化处理,但这种格式在图像合成时会存在两个问题:由于对有Alpha通道的图片进行合成处理时,先要获取原始图像RGB的值,这个原始图像真正的RGB值必须考虑Alpha通道,因此会进行一次计算:源图像像素颜色 X alpha。如果这种计算都在合成时进行处理,性能处理压力就会集中在合成阶段;在图像合成时,有时需要进原创 2020-06-15 22:08:06 · 3122 阅读 · 0 评论 -
图像表示的相关概念:图像深度、像素深度、位深的区别和关系
本文介绍了图像深度、像素深度、位深的概念,图像深度是指表示图像的像素中有多少位用于表示颜色,像素深度是指图像中一个像素占用的位数,位深是指像素的通道占用的位数。像素深度大于等于图像深度,等于所有通道位深的和。原创 2020-11-09 19:54:26 · 20891 阅读 · 8 评论 -
《数字图像处理》学习感悟:第二章数字图像基础(3)采样、量化和插值
本节介绍了数字图像采样和量化的相关概念,采样就是对数字图像表示的空间坐标进行离散化设置,量化就是对图像的灰度值的表示进行数字化表示,二者的单位决定了图像的精度,图像的分辨率就是基于二者来决定的。图像插值是在图像进行仿射变换和投影变换时根据已知的输入图像像素坐标及灰度值计算目标图像像素坐标及灰度值的计算方法。原创 2021-05-26 21:38:17 · 3977 阅读 · 28 评论 -
《数字图像处理》学习总结及感悟:第二章数字图像基础(2)电磁波、传感器及辐射成像原理
本文基于冈萨雷斯《数字图像处理》第二章第二节和第三节的内容,对数字图像密切相关的电磁波谱和光、获取图像的成像传感器等方面的相关知识进行了介绍。本部分最重要的概念就是辐射能成像的原理,如电磁波入射到成像对象时,由于成像物体不同位置的不同特性,入射波所携带的能量被物体反射或吸收后透射出来的能量不同且表征了景物各位置的特征,因此才能使得传感器通过捕获这些反射或透射的能量来获取到物体的影像。原创 2021-05-23 19:55:21 · 4529 阅读 · 45 评论 -
《数字图像处理》学习总结及感悟:第二章数字图像基础(1)人眼结构、感知和错觉
本文对《数字图像处理》一书第二章第一节《视觉感知要素》进行了精简介绍,介绍了人眼结构、成像机理、亮度适应和辨别以及错觉等内容,有助于理解人眼视觉的机理。原创 2021-05-21 20:43:31 · 11423 阅读 · 43 评论