零基础机器学习入门
文章平均质量分 97
本专栏是笔者自己从零开始学习人工智能知识的分享,当然这里的零基础是有歧义的,学习人工智能高等代数的知识还是必须知道的。笔者写这个专栏,一方面是希望能督促自己努力去学习,去真正掌握相关知识,二是希望能将自己学习的知识总结出来,帮助那些与笔者这样想了解人工智能但又无所适从的初学者快速入门。
LaoYuanPython
CSDN 2020年博客之星TOP3。博客主要关注音视频剪辑、数字图像处理、图形界面开发等Python相关知识!
另有高数、图像处理、OpenCV、Python以及架构类等电子书,如需要请扫描博客左下部二维码加微公号咨询。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
扣子智能体实现非流式对话的过程及API详解
本文介绍了调用扣子智能体平台智能体实现非流式对话的过程,并介绍了实现中需要涉及的API相关请求和应答消息内容。通过**发起对话API**实现向智能体提交服务请求,通过**查看对话详情API**查看对话是否处理完成,通过**查看对话消息详情API**可以获取非流式对话的智能体处理完成应答,就可以在客户端远程调用一次智能体服务。原创 2025-11-08 14:00:00 · 1779 阅读 · 1 评论 -
基于新版本扣子(coze)平台的TTS智能体创建发布过程及开放API信息查阅方法
本文介绍了在字节跳动其下的COZE AI应用开发平台2025年10月版本配置开发简单智能体的全过程案例,通过该案例可以了解智能体的基本能力和开发智能体的基本过程,并了解COZE提供的 API能力。原创 2025-11-08 06:30:00 · 1726 阅读 · 0 评论 -
使用API调用扣子语音合成TTS智能体实现文本转语音功能
本文介绍了调用扣子智能体实现文本转语音的具体实现,通过对智能体发起非流式对话,然后判断智能体对话任务是否处理完成,在任务处理完成后调用查看智能体对话消息详情来获取智能体应答,根据应答提供的生成语音的URL地址下载音频到本地。这个案例过程有助于理解扣子智能体的非流式对话服务的整体过程。原创 2025-11-08 19:00:00 · 1299 阅读 · 0 评论 -
Scikit-learn(sklearn)机器学习的数据分割方法--重复 K 折RepeatedKFold
本文介绍了重复 K 折交RepeatedKFold数据分割的原理、算法以及在Scikit-learn(sklearn)中的实现,并提供了一个使用案例。RepeatedKFold首先将数据分成 K 个折叠,执行标准的 K-Fold 交叉验证,然后重复这个过程 n 次,每次使用不同的随机分割,每次都会重新随机划分 K 个折叠来提升评估的稳定性和可靠性。原创 2025-08-16 16:15:00 · 1294 阅读 · 0 评论 -
Scikit-learn(sklearn)机器学习的数据分割方法--分层K折交叉验证StratifiedKFold
本文介绍了机器学习的数据分割方法--分层K折交叉验证StratifiedKFold的原理以及在sklearn中的实现,并结合案例介绍了StratifiedKFold的使用。老猿认为StratifiedKFold这个方法在kfold的思想基础上,借鉴了train_test_split使用分类标签stratify的场景。原创 2025-08-16 09:01:11 · 952 阅读 · 0 评论 -
Scikit-learn(sklearn)机器学习的数据分割方法--train_test_split和KFold
本文简单介绍了机器学习中的数据分割经常使用的方法,并具体介绍了sklearn中简单随机分割train_test_split、标准K折交叉验证KFold两种具体方法及其使用案例,后续文章将介绍其他几种数据分割方法。需要注意任何基于统计的预处理(如均值填充、标准化)都应仅在训练集上计算参数,再应用到测试集,这样测试集才能起到评估训练后模型的效果。原创 2025-07-20 18:28:51 · 1500 阅读 · 0 评论 -
sklearn(Scikit-learn)中的数据集介绍
数据是人工智能工作的燃料,Scikit-learn内置了多种经典数据集,适用于机器学习算法的快速验证、教学和实验。本文详细介绍了每种数据集的功能、加载方法和归属类别,有助于大家快速掌握Scikit-learn的数据集情况,并在进行机器学习时熟练使用。原创 2025-07-13 19:24:50 · 1223 阅读 · 0 评论 -
scikit-learn依赖的高效序列化(保存/加载)和并行计算的Python joblib库
joblib 是一个用于 Python 的轻量级流水线工具库,是机器学习工程师和数据科学家的必备工具,特别适合模型持久化、并行加速、大数据处理、快速磁盘缓存。本文介绍了joblib的功能、安装,并结合案例介绍了主要的API能力。原创 2025-07-13 08:48:28 · 1567 阅读 · 0 评论 -
sklearn(Scikit-learn)开源机器学习库介绍
Scikit-learn是 Python 中最受欢迎的开源机器学习库,专为监督学习和无监督学习任务设计。sklearn提供了包括数据预处理、模型训练、模型评估、实用工具等相关能力,并内置机器学习常见的数据集。但因为其局限性scikit-learn 不支持复杂的机器学习任务(如深度学习)、不支持深度学习、不适合超大规模数据, 对非结构化数据处理能力弱。本文就sklearn(Scikit-learn)开源机器学习库的功能、主要能力等相关内容简单做了个介绍,后续文章将展开详细介绍相关能力。原创 2025-07-13 15:30:00 · 1278 阅读 · 0 评论 -
AdaBoost第m轮弱分类器的样本权重与第m-1轮的强分类器之间的关系证明
本文介绍了AdaBoost提升算法第m轮弱分类器的样本权重与第m-1轮的强分类器之间的关系,并通过算术推导进行了证明。通过推导可以确认 $w_{mi}$ 和前 $m-1$ 次迭代的强分类器 $F_{m-1}(x_i)$ 存在正比例关系,这个关系对于利用AdaBoost的损失函数求弱分类器的权重值非常有用。原创 2025-06-17 07:23:43 · 1040 阅读 · 0 评论 -
AdaBoost自适应提升算法
本文介绍了AdaBoost自适应提升算法的思路、原理及算法详细过程,并针对该过程中样本数据的初始权重值和弱分类器的权值计算方式进行了展开介绍,有利于各位读者完整理解该算法。原创 2025-06-17 07:20:28 · 933 阅读 · 0 评论 -
COZE扣子平台TTS语音合成智能体及API访问功能完善
本文在《[在扣子(coze)配置一个提供TTS语音合成服务+咨询服务的综合智能体:语音合成助手》](https://blog.csdn.net/LaoYuanPython/article/details/145932309)基础上对语音合成助手智能体和调用API的方法进行了完善,实现了通过API可以指定完成语音合成任务、输出合成的MP3文件保存到本地,并可以在合成过程中指定音色类型。原创 2025-03-08 16:50:18 · 2367 阅读 · 0 评论 -
在扣子(coze)配置一个提供TTS语音合成服务+咨询服务的综合智能体:语音合成助手
本文介绍了如何在coze平台配置一个提供TTS语音合成服务+咨询服务的综合智能体:语音合成助手,提供了Python调用API访问语音合成助手完成语音合成任务的方法。同时通过构建智能体实现业务功能的过程中,提示词工程在这种稍显复杂逻辑的智能体服务中起到了非常重要作用。原创 2025-03-08 16:48:33 · 2877 阅读 · 0 评论 -
使用Python requests库调用扣子(coze)API实现AI智能体对话案例
本文介绍了coze智能体中的一些基本概念和发起一次远程智能体会话调用的三个基本API,并用这三个基本API结合Python requests库实现了一个远程调用智能体完成一次对话的程序示例,便于大家理解coze智能体Python开发的实现方式。原创 2025-03-01 16:51:51 · 8919 阅读 · 5 评论 -
扣子(coze)智能体创建发布过程及开放API信息查阅方法
本文介绍了在字节跳动其下的COZE AI应用开发平台配置开发简单智能体的全过程案例,通过该案例可以了解智能体的基本能力和开发智能体的基本过程,并了解COZE提供的 API能力。原创 2025-03-01 16:48:23 · 5358 阅读 · 0 评论 -
神经网络激活函数定义速查
本文简约介绍了神经网络常用的激活函数计算公式,可以用于不记得激活函数定义者速查。原创 2024-10-23 20:00:28 · 1357 阅读 · 0 评论 -
神经网络高级激活函数大全及keras中的函数定义
本文介绍了神经网络中常用的高级激活函数以及Keras中的具体函数,高级激活函数通常比基础激活函数更复杂,可能包含更多的参数或计算步骤,通常旨在解决基础激活函数的某些限制,如梯度消失或激活函数的非单调性。基础激活函数适用于大多数情况,但高级激活函数可能在特定任务或网络结构中表现更好。选择哪种激活函数通常取决于具体任务的需求、数据的特性以及实验的结果。在实践中,可能需要尝试不同的激活函数来找到最适合特定问题的激活函数。原创 2024-10-13 20:13:56 · 1595 阅读 · 0 评论 -
使用mnist数据集和LeakyReLU高级激活函数训练神经网络示例代码
本文介绍了使用mnist数据集和LeakyReLU高级激活函数训练神经网络示例代码,这个示例代码使用全连接层,激活函数在隐藏层使用的是LeakyReLU,输出层使用的是softmax。这个神经网络是比较简单的神经网络,根据训练后的测试情况,其识别精度接近98%。原创 2024-10-13 20:08:50 · 1046 阅读 · 0 评论 -
神经网络激活函数列表大全及keras中的激活函数定义
在机器学习中,激活函数是神经网络中的一种函数,用于在神经网络的每个神经元中引入非线性。没有激活函数,神经网络就无法学习复杂的模式,因为线性变换的组合仍然是线性的。在Keras中,激活函数可以通过设置单独的 Activation 层实现,也可以在构造层对象时通过传递 activation 参数实现。本文介绍了11个激活函数,包括线性函数linear、线性指数激活函数elu、整流线性单元relu、可伸缩指数线性单元SELU、softmax函数、softplus函数、softsign函数、sigmoid函数、ha原创 2024-10-06 20:12:36 · 2201 阅读 · 0 评论 -
机器学习中的模型、策略和算法
本文介绍了机器学习方法的模型、策略和算法三要素的概念,模型就是所要学习的条件概率分布或决策函数,由决策函数表示的模型称为非概率模型,由条件概率表示的模型称为概率模型,模型存在于假设空间中。模型的假设空间有无穷多的模型,机器学习的目标就是要从假设空间中按一定的准则来学习或选择最优模型,这个准则就是学习的策略。策略是连接模型和算法的桥梁,它决定了如何使用算法来训练模型,以达到最佳的学习效果。策略涉及如何构建和训练模型,它包括损失函数的选择、正则化方法、学习速率的设定等,策略决定了模型的训练方式。策略有多种,其中原创 2024-09-22 10:44:41 · 1583 阅读 · 0 评论 -
Keras中initializers模块常见模型初始化方法详解
本文详细介绍了Keras中initializers模块常见模型初始化方法的含义,文章大部分内容来源于官网参考文档:[Keras初始化器的用法](https://keras-zh.readthedocs.io/initializers/) ,部分内容为笔者单独研究进行的补充,有助于深入理解各个初始化器的用法。最后使用keras提供了一个完整的简单模型进行训练的例子。原创 2024-09-12 08:29:35 · 1809 阅读 · 0 评论 -
统计机器学习基础知识
本文介绍了机器学习的一些基础知识,机器学习是人工智能的一个分支,而借助于机器学习中的神经网络,通过多层神经网络进行知识学习的深度学习是机器学习领域中的一个重要研究方向。原创 2024-08-31 11:07:43 · 2316 阅读 · 0 评论
分享