使用Python requests库调用扣子(coze)API实现AI智能体对话案例

☞ ░ 前往老猿Python博客 ░ https://blog.csdn.net/LaoYuanPython

一、引言

在《扣子(coze)智能体创建发布过程及开放API信息查阅方法》介绍了如何在字节跳动旗下扣子AI应用开发平台开发一个简单智能体的全过程,并介绍了访问智能体的API文档信息查阅方法。

coze官方API文档中提供的Python调用是基于cozepy库来实现的,由于只能访问coze应用平台,没有通用性,因此本文介绍利用Python requests库调用API访问扣子(coze)智能体实现对话作为案例,对于访问别的智能体平台有一定的参考价值。

在这里插入图片描述

二、一些基础概念

  • 会话(Conversation):智能体和用户之间的一段问答交互。一个会话包含一条或多条消息,并且能够自动处理截断,以适应模型的上下文内容;
  • 消息(Message):一条由用户或智能体创建的消息,消息内容可以包括文本、图片或文件。消息以列表的形式储存在对话中。
  • 对话(chat):在会话中对智能体的一次调用。智能体收到请求后,结合用户输入、通过预设的一系列工作流等配置来调用模型或工具执行指定任务。每个对话都是会话的一部分,智能体会将对话中产生的消息添加到会话中。可以直接发起对话,与智能体进行一次交互;也可以创建会话和消息,并在指定会话中发起对话,会话中的其他消息会作为历史消息传递给大模型
  • 个人访问令牌:用于其他应用程序和平台的个人访问令牌。不要与他人共享个人访问令牌,也不要在浏览器或其他客户端代码中暴露,以保护账户的安全。
  • bot_id:智能体ID。进入智能体的开发页面,开发页面 URL 中 bot 参数后的数字就是智能体ID。
  • user_id:标识当前与智能体交互的用户
  • 流式响应:智能体在生成回复的同时,将回复消息以数据流的形式逐条发送给客户端。处理结束后,服务端会返回一条完整的智能体回复;
  • 非流响应:无论对话是否处理完毕,立即发送响应消息。开发者可以通过接口查看对话详情确认本次对话处理结束后,再调用查看对话消息详情接口查看模型回复等完整响应内容

三、对应接口说明

本案例是实现与智能体对话,智能体已经在上篇博文《扣子(coze)智能体创建发布过程及开放API信息查阅方法》中介绍了创建发布过程,在此直接使用。
要实现对话,需要使用对话相关API,这些API请见coze官方API管理信息:
在这里插入图片描述

3.1、发起对话

发起对话接口用于向指定智能体发起一次对话,支持在对话时添加对话的上下文消息,以便智能体基于历史消息做出合理的回复。开发者可以按需选择响应方式,即流式或非流式响应,响应方式决定了开发者获取智能体回复的方式。

本文案例采用的是非流式响应。

请求url为: https://api.coze.cn/v3/chat,请求需要的主要参数包括:

  1. token:扣子 API访问令牌,以进行 API 请求的鉴权,token的生成请参考上篇博文《扣子(coze)智能体创建发布过程及开放API信息查阅方法》;
  2. conversation_id:会话ID,可以为空,为空表示创建一个新会话,否则表示继承一个历史会话;
  3. bot_id:智能体ID,请参考上篇博文《扣子(coze)智能体创建发布过程及开放API信息查阅方法》;
  4. user_id:平台用户ID;
  5. stream:是否启用流式响应;
  6. additional_messages.content:要发送的消息内容;
  7. additional_messages.content_type:消息内容的类型,支持为text或object_string;
  8. additional_messages.role:发送这条消息的实体,user:代表该条消息内容是用户发送的,assistant:代表该条消息内容是智能体发送的;
  9. additional_messages.type:消息类型,取值包括question、answer、function_call等。如果 autoSaveHistory=true,type 支持设置为 question 或 answer。如果 autoSaveHistory=false,type 支持设置为 question、answer、function_call、tool_output/tool_response。其中,type=question 只能和 role=user 对应,即仅用户角色可以且只能发起 question 类型的消息
    ※ question:用户输入内容
    ※ answer:智能体返回给用户的消息内容,支持增量返回。如果工作流绑定了消息节点,可能会存在多 answer 场景,此时可以用流式返回的结束标志来判断所有 answer 完成
    ※ function_call:智能体对话过程中调用函数(function call)的中间结果。
    ※ tool_response:调用工具 (function call)后返回的结果。
  10. auto_save_history:是否保存本次对话记录。

以下是一个请求消息体的示例:

{
    "bot_id": "7473391635976831011",
    "user_id": "jiangwp",
    "stream": false,
    "auto_save_history": true,
    "additional_messages": [
        {
            "role": "user",
            "content": "早上好!",
            "content_type": "text"
        }
    ]
}

注意:botid一定是字符串,如果没有用引号标识,作为数字输入会报botid不正确的错误。

返回消息内容示例:

{
    "data": {
        "id": "7474915122180309018",
        "conversation_id": "7474915122180292634",
        "bot_id": "7473391635976831011",
        "created_at": 1740389300,
        "last_error": {
            "code": 0,
            "msg": ""
        },
        "status": "in_progress"
    },
    "code": 0,
    "msg": ""
}

注意:

  • 由于消息是以非流式响应发送的,这个应答是收到消息后的立即应答,状态为“in_progress”
  • conversation_id:表示会话id,后续需要复用,印象记下来放到后续请求参数中
  • id:这个ID经验证就是对话id,即chatid;
  • code:为0表示对话请求成功,如果不为0,则msg中返回错误原因。

3.2、查看对话详情

在非流式会话场景中,调用发起对话接口后,可以先轮询此 API 确认本轮对话已结束(status=completed),再调用接口查看对话消息详情查看本轮对话的模型回复。

  • 仅在对话开启了保存历史记录(auto_save_history=true)后,可通过此接口查看对话的详细信息。
  • 建议每秒最多调用 1 次此接口,否则可能触发接口限流。

该消息不需要单独的请求消息消息体,只需要URL地址即可。请求url为: https://api.coze.cn/v3/chat/retrieve?conversation_id={conversationID}&chat_id={chatID}&,需要的主要参数包括:

  1. token:扣子 API访问令牌,以进行 API 请求的鉴权,token的生成请参考上篇博文《扣子(coze)智能体创建发布过程及开放API信息查阅方法》;
  2. conversation_id:会话ID,可以为空,为空表示创建一个新会话,否则表示继承一个历史会话;
  3. chat_id:话的唯一标识,即上面发起对话消息应答消息中的ID。

有2种应答消息:

  1. 任务还未处理完,返回应答消息的状态为in_progress,需要休眠后继续轮询;
  2. 任务处理完,返回应答消息的状态为completed;
  3. code。

应答消息示例

{
    "code": 0,
    "data": {
        "bot_id": "7473391635976831011",
        "conversation_id": "7474915122180292634",
        "created_at": 1740389300,
        "id": "7474915122180309018",
        "status": "in_progress"
    },
    "detail": {
        "logid": "2025022417282095E03F20E43A3B938B4E"
    },
    "msg": ""
}

3.3、查看对话消息详情

查看指定对话中模型回复、智能体执行的中间结果等消息。
查看对话消息详情 API 通常用于非流式对话场景中,查看某次对话(chat)中 type=answer 的智能体回复及 type=follow-up 等类型的对话中间态消息。

调用此 API 之前,建议先以每秒最多 1 次的频率轮询 查看对话详情 API 确认本轮对话已结束(status=completed),否则调用此 API 时获取到的消息内容可能不完整。

该消息不需要单独的请求消息消息体,只需要URL地址即可:
https://api.coze.cn/v3/chat/message/list?chat_id={chatID}&conversation_id={conversationID}

应答消息示例

{
    "code": 0,
    "data": [
        {
            "bot_id": "7473391635976831011",
            "chat_id": "7474915122180309018",
            "content": "早上好!有什么关于饮食与健康方面的问题,都可以来问我哦,比如你在饮食上有什么疑惑,或者想让我帮你制定饮食计划,都尽管说。  ",
            "content_type": "text",
            "conversation_id": "7474915122180292634",
            "created_at": 1740389300,
            "id": "7474915122180538394",
            "reasoning_content": "",
            "role": "assistant",
            "type": "answer",
            "updated_at": 1740389302
        },
        {
            "bot_id": "7473391635976831011",
            "chat_id": "7474915122180309018",
            "content": "{\"msg_type\":\"generate_answer_finish\",\"data\":\"{\\\"finish_reason\\\":0,\\\"FinData\\\":\\\"\\\"}\",\"from_module\":null,\"from_unit\":null}",
            "content_type": "text",
            "conversation_id": "7474915122180292634",
            "created_at": 1740389304,
            "id": "7474915133123395611",
            "role": "assistant",
            "type": "verbose",
            "updated_at": 1740389304
        },
        {
            "bot_id": "7473391635976831011",
            "chat_id": "7474915122180309018",
            "content": "制定一份一周的健康减肥食谱",
            "content_type": "text",
            "conversation_id": "7474915122180292634",
            "created_at": 1740389304,
            "id": "7474915133123428379",
            "role": "assistant",
            "type": "follow_up",
            "updated_at": 1740389304
        },
        {
            "bot_id": "7473391635976831011",
            "chat_id": "7474915122180309018",
            "content": "高血糖患者应该避免食用哪些食物?",
            "content_type": "text",
            "conversation_id": "7474915122180292634",
            "created_at": 1740389304,
            "id": "7474915133123444763",
            "role": "assistant",
            "type": "follow_up",
            "updated_at": 1740389304
        },
        {
            "bot_id": "7473391635976831011",
            "chat_id": "7474915122180309018",
            "content": "地中海饮食对健康有哪些好处?",
            "content_type": "text",
            "conversation_id": "7474915122180292634",
            "created_at": 1740389304,
            "id": "7474915133123461147",
            "role": "assistant",
            "type": "follow_up",
            "updated_at": 1740389304
        }
    ],
    "detail": {
        "logid": "20250224172825B3BFE4D387216708F753"
    },
    "msg": ""
}

消息返回data数据有多条,每条消息的作用需要看type的取值,返回信息的关键字段如下:
1、content:智能体返回给用户的消息内容
2、type:返回消息的类别

  • answer:content中为智能体针对请求的返回应答文本内容
  • verbose:多 answer 场景下,服务端会返回一个 verbose 包,对应的 content 为 JSON 格式,content.msg_type =generate_answer_finish 代表全部 answer 回复完成,如果不采用轮询 查看对话详情 API 确认本轮对话已结束(status=completed)时,也可以通过此机制判断回复是否完成
  • follow-up:如果在智能体上配置打开了用户问题建议开关,则会返回推荐问题相关的回复内容,content中为推荐的问题

四、程序示例代码

上面介绍了coze平台对话相关的三个API,通过顺序发起对话->查看对话详情->查看对话消息详情三个API,就可以在客户端远程调用一次智能体服务。

下面是使用Python requests库调用扣子(coze)API实现AI智能体对话的一个参考案例:

import requests
import json,time

api_key = "pat_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

botid = "7473391635976831011"
baseUrl =  'https://api.coze.cn/v3/chat'
headers = {
    "Authorization": f"Bearer {api_key}",
    'Content-Type': 'application/json'
}

def processQuestionAnswer(response_data):
    if response_data['code']:
        print("应答异常:",response_data['msg'])
    else:
        data = response_data['data']
        count = 0
        for item in data:
            if item['type']=='answer':
                print("大模型应答:",item['content'])
            elif item['type']=='follow_up':
                if count==0:
                    print("您可以参考如下方式提问:")
                print(f"☆ 问题{count+1}:",item['content'])
                count += 1


def getQuesyionAnswer(conversationID,chatID):
    params = { "bot_id": botid,"task_id": chatID }
    getChatStatusUrl = baseUrl+f'/retrieve?conversation_id={conversationID}&chat_id={chatID}&'
    
    while True:
        response = requests.get(getChatStatusUrl, headers=headers, params=None)
        if response.status_code == 200:
            response_data = response.json()
            print(f"response_data:\n{json.dumps(response_data,indent=4, ensure_ascii=False)}")
            status = response_data['data']['status']
            if status == 'completed':
                # 从响应中提取实际的应答内容
                getChatAnswerUrl = baseUrl+f'/message/list?chat_id={chatID}&conversation_id={conversationID}'
                response = requests.get(getChatAnswerUrl, headers=headers, params=params)
                if response.status_code == 200:
                    response_data = response.json()
                    print("模型返回数据:\n", json.dumps(response_data,indent=4, ensure_ascii=False))
                    processQuestionAnswer(response_data)
                    return True
                break
            else:
                print(f"任务仍在处理中,状态: {status}")
                time.sleep(1)  # 等待5秒后再次检查
        else:
            print(f"请求失败,状态码: {response.status_code}")
            break
    return False
        
def questionService(questionText):
     
    # 定义API的URL和授权令牌

    data = {
    "bot_id": botid,
    "user_id": "jiangwp",
    "stream": False,
    "auto_save_history": True,
    "additional_messages": [
        {
            "role": "user",
            "content": questionText,
            "content_type": "text"
        }
        ]
    }

    # 发送POST请求
    print(f"请求信息:{json.dumps(data,indent=4, ensure_ascii=False)}")
    response = requests.post(baseUrl, headers=headers, data=json.dumps(data))

    # 检查响应状态码
    if response.status_code == 200:
        # 解析响应内容
        response_data = response.json()
        print("响应内容:", json.dumps(response_data,indent=4, ensure_ascii=False))
        chatid = response_data['data']['id']
        answer = response_data.get("answer")
        conversation_id = response_data['data']['conversation_id']
        print(f"chatid={chatid},智能体应答: {answer}")

        getQuesyionAnswer(conversation_id,chatid)

    else:
        print("请求失败,状态码:", response.status_code)
        print("错误信息:", response.text)



questionService("Dify是什么?")

程序输出信息如下:

请求信息:{
    "bot_id": "7473391635976831011",
    "user_id": "jiangwp",
    "stream": false,
    "auto_save_history": true,
    "additional_messages": [
        {
            "role": "user",
            "content": "Dify是什么?",
            "content_type": "text"
        }
    ]
}
响应内容: {
    "data": {
        "id": "7475257328695164954",
        "conversation_id": "7475257328695148570",
        "bot_id": "7473391635976831011",
        "created_at": 1740468976,
        "last_error": {
            "code": 0,
            "msg": ""
        },
        "status": "in_progress"
    },
    "code": 0,
    "msg": ""
}
chatid=7475257328695164954,智能体应答: None
response_data:
{
    "code": 0,
    "data": {
        "bot_id": "7473391635976831011",
        "conversation_id": "7475257328695148570",
        "created_at": 1740468977,
        "id": "7475257328695164954",
        "status": "in_progress"
    },
    "detail": {
        "logid": "20250225153617FDAC4DFF66ABFC06349B"
    },
    "msg": ""
}
任务仍在处理中,状态: in_progress
response_data:
{
    "code": 0,
    "data": {
        "bot_id": "7473391635976831011",
        "conversation_id": "7475257328695148570",
        "created_at": 1740468977,
        "id": "7475257328695164954",
        "status": "in_progress"
    },
    "detail": {
        "logid": "202502251536185C3716AA38C8430A3CFB"
    },
    "msg": ""
}
任务仍在处理中,状态: in_progress
response_data:
{
    "code": 0,
    "data": {
        "bot_id": "7473391635976831011",
        "conversation_id": "7475257328695148570",
        "created_at": 1740468977,
        "id": "7475257328695164954",
        "status": "in_progress"
    },
    "detail": {
        "logid": "202502251536196FE43050EDAB7205C321"
    },
    "msg": ""
}
任务仍在处理中,状态: in_progress
response_data:
{
    "code": 0,
    "data": {
        "bot_id": "7473391635976831011",
        "conversation_id": "7475257328695148570",
        "created_at": 1740468977,
        "id": "7475257328695164954",
        "status": "in_progress"
    },
    "detail": {
        "logid": "2025022515362066DD46AB5621640A4BE5"
    },
    "msg": ""
}
任务仍在处理中,状态: in_progress
response_data:
{
    "code": 0,
    "data": {
        "bot_id": "7473391635976831011",
        "completed_at": 1740468982,
        "conversation_id": "7475257328695148570",
        "created_at": 1740468977,
        "id": "7475257328695164954",
        "status": "completed",
        "usage": {
            "input_count": 647,
            "output_count": 54,
            "token_count": 701
        }
    },
    "detail": {
        "logid": "20250225153621F4E616C4ACCC210B83FB"
    },
    "msg": ""
}
模型返回数据:
 {
    "code": 0,
    "data": [
        {
            "bot_id": "7473391635976831011",
            "chat_id": "7475257328695164954",
            "content": "很抱歉,我只能回答与饮食和健康有关的问题。如果你有饮食与健康方面的问题,比如关于某种食物对健康的影响、如何制定健康的饮食计划等,都可以随时问我,我会尽力为你解答。  ",
            "content_type": "text",
            "conversation_id": "7475257328695148570",
            "created_at": 1740468977,
            "id": "7475257328695296026",
            "reasoning_content": "",
            "role": "assistant",
            "type": "answer",
            "updated_at": 1740468978
        },
        {
            "bot_id": "7473391635976831011",
            "chat_id": "7475257328695164954",
            "content": "{\"msg_type\":\"generate_answer_finish\",\"data\":\"{\\\"finish_reason\\\":0,\\\"FinData\\\":\\\"\\\"}\",\"from_module\":null,\"from_unit\":null}",
            "content_type": "text",
            "conversation_id": "7475257328695148570",
            "created_at": 1740468981,
            "id": "7475257347137634355",
            "role": "assistant",
            "type": "verbose",
            "updated_at": 1740468981
        },
        {
            "bot_id": "7473391635976831011",
            "chat_id": "7475257328695164954",
            "content": "Dify和ChatGPT有什么区别?",
            "content_type": "text",
            "conversation_id": "7475257328695148570",
            "created_at": 1740468982,
            "id": "7475257347137650739",
            "role": "assistant",
            "type": "follow_up",
            "updated_at": 1740468981
        },
        {
            "bot_id": "7473391635976831011",
            "chat_id": "7475257328695164954",
            "content": "如何使用Dify?",
            "content_type": "text",
            "conversation_id": "7475257328695148570",
            "created_at": 1740468982,
            "id": "7475257351251951653",
            "role": "assistant",
            "type": "follow_up",
            "updated_at": 1740468981
        },
        {
            "bot_id": "7473391635976831011",
            "chat_id": "7475257328695164954",
            "content": "Dify的应用场景有哪些?",
            "content_type": "text",
            "conversation_id": "7475257328695148570",
            "created_at": 1740468982,
            "id": "7475257351251968037",
            "role": "assistant",
            "type": "follow_up",
            "updated_at": 1740468981
        }
    ],
    "detail": {
        "logid": "20250225153621C49658C32F868A0B3936"
    },
    "msg": ""
}
大模型应答: 很抱歉,我只能回答与饮食和健康有关的问题。如果你有饮食与健康方面的问题,比如关于某种食物对健康的影响、如何制定健康的饮食计划等,都可以随时问我,我会尽力为你解答。  
您可以参考如下方式提问:
☆ 问题1: Dify和ChatGPT有什么区别?
☆ 问题2: 如何使用Dify?
☆ 问题3: Dify的应用场景有哪些?

五、小结

本文介绍了coze智能体中的一些基本概念和发起一次远程智能体会话调用的三个基本API,并用这三个基本API结合Python requests库实现了一个远程调用智能体完成一次对话的程序示例,便于大家理解coze智能体Python开发的实现方式。

本文仅介绍了三个API用于文本对话的使用方法,其实它们支持多模式及更复杂对话,另外coze提供了众多的API,大家可以使用它们实现非常丰富的AI应用。

另外coze提供了cozepy库和coze库以实现更便捷的Python访问coze,但用requests库有利于其他智能体应用开发平台进行参考。

更多人工智能知识学习过程中可能遇到的疑难问题及解决办法请关注专栏《零基础机器学习入门》及付费专栏《机器学习疑难问题集》后续的文章。

写博不易,敬请支持:

如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

关于老猿的付费专栏

  1. 付费专栏《https://blog.csdn.net/laoyuanpython/category_9607725.html 使用PyQt开发图形界面Python应用》专门介绍基于Python的PyQt图形界面开发基础教程,对应文章目录为《 https://blog.csdn.net/LaoYuanPython/article/details/107580932 使用PyQt开发图形界面Python应用专栏目录》;
  2. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10232926.html moviepy音视频开发专栏 )详细介绍moviepy音视频剪辑合成处理的类相关方法及使用相关方法进行相关剪辑合成场景的处理,对应文章目录为《https://blog.csdn.net/LaoYuanPython/article/details/107574583 moviepy音视频开发专栏文章目录》;
  3. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10581071.html OpenCV-Python初学者疑难问题集》为《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的伴生专栏,是笔者对OpenCV-Python图形图像处理学习中遇到的一些问题个人感悟的整合,相关资料基本上都是老猿反复研究的成果,有助于OpenCV-Python初学者比较深入地理解OpenCV,对应文章目录为《https://blog.csdn.net/LaoYuanPython/article/details/109713407 OpenCV-Python初学者疑难问题集专栏目录
  4. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10762553.html Python爬虫入门 》站在一个互联网前端开发小白的角度介绍爬虫开发应知应会内容,包括爬虫入门的基础知识,以及爬取CSDN文章信息、博主信息、给文章点赞、评论等实战内容。

前两个专栏都适合有一定Python基础但无相关知识的小白读者学习,第三个专栏请大家结合《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的学习使用。

对于缺乏Python基础的同仁,可以通过老猿的免费专栏《https://blog.csdn.net/laoyuanpython/category_9831699.html 专栏:Python基础教程目录)从零开始学习Python。

如果有兴趣也愿意支持老猿的读者,欢迎购买付费专栏。

老猿Python,跟老猿学Python!

☞ ░ 前往老猿Python博文目录 https://blog.csdn.net/LaoYuanPython
<think>好的,我需要帮助用户找到与Coze相关的API文档和接口信息。首先,用户提到他们想获取CozeAPI文档或接口说明,所以我要先确认可用的资源。 根据用户提供的引用内容,有三个引用来源。引用[1]提到Coze提供了工作流、Bots、文件、知识等的API接口,并且文档专注于工作流的API调用。引用[2]则推荐了Coze的官方文档和LangChain示例作为深入学习资源。引用[3]给出了使用Postman测试对话接口的具体示例,包括请求方法和参数。 首先,我应该整理这些信息,引导用户到官方文档,因为这是最权威的来源。同时,可以指出不同的接口类型,如工作流、Bots、对话接口,并说明如何调用它们。用户可能需要具体的步骤,比如创建授权、使用Bearer Token,以及请求参数示例,如bot_id、user_id等,这些在引用[1]和[3]中都有提到。 另外,用户可能需要知道如何测试API,比如使用Postman,引用[3]中的示例可以直接帮助他们构造请求。同时,引用[2]提到的LangChain资源可能对开发AI聊天机器人有帮助,这也是用户可能感兴趣的部分。 需要确保回答结构清晰,分点说明,涵盖官方文档入口、主要接口类型、调用示例和测试方法,以及相关资源推荐。最后,生成相关问题,帮助用户进一步探索,比如如何认证、处理流式响应等。</think>### Coze API 文档及接口说明 根据引用内容,Coze 提供了多种 API 接口,涵盖工作流、Bots、文件、知识等功能模块。以下是关键信息整理: --- #### 1. **官方文档入口** - **核心资源**:Coze 官方文档是最权威的接口说明来源,包含完整的接口定义、参数说明和调用示例[^2]。 - **接口分类**:文档中详细列出了工作流、Bots、对话、知识等模块的接口,例如: - 工作流调用:通过 API 直接触发自动化流程[^1]。 - 对话接口:支持文本交互,可配置流式响应(`stream: true`)或非流式响应[^3]。 --- #### 2. **主要接口类型** - **工作流接口** - 功能:执行预定义的工作流任务,如数据处理、自动化操作。 - 授权:需先通过 `Bearer token` 鉴权[^1]。 - **对话接口** - 功能:实现AI 机器人的文本交互,支持多轮对话。 - 请求示例(非流式): ```json { "bot_id": "739445028953921****", "user_id": "user", "stream": false, "additional_messages": [ { "role": "user", "content": "你好", "content_type": "text" } ] } ``` 需在请求头中添加 `Authorization: Bearer {token}`。 - **知识接口** - 功能:管理知识内容,支持文件上传、检索等操作[^1]。 --- #### 3. **接口调用步骤** 1. **创建授权**:在 Coze 控制台生成 API 密钥(`Bearer token`)。 2. **构造请求**: - 使用 POST 方法,设置 `Content-Type: application/json`。 - 路径参考:如对话接口为 `/v1/chat/completions`(需以文档为准)。 3. **处理响应**:根据 `stream` 参数选择流式或一次性返回结果。 --- #### 4. **测试工具建议** - **Postman 测试示例**: 引用[3]提供了非流式对话接口的测试代码,可直接导入 Postman 调试。 - **流式响应处理**:若需实时返回结果,设置 `stream: true` 并监听数据流[^3]。 --- #### 5. **扩展资源** - **LangChain 集成**:Coze API 可与 LangChain 框架结合,用于构建复杂 AI 应用[^2]。 - **GitHub 示例**:参考 LangChain 官方仓中的代码示例,加速开发。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LaoYuanPython

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值