第六章测验的习题课
总结的几点:
1.特征值和特征向量。如何求特征值?
A−λI
A
−
λ
I
(也可以使用另外一些办法,如矩阵的性质-奇异必有0,如特征值乘积等于行列式等等)
2.微分方程
3.对称矩阵的特性。主要是特征值为实数,特征向量充足且正交,可以构建特征向量矩阵,其为正交矩阵.于是原矩阵可以表示为:
A=QΛQT
A
=
Q
Λ
Q
T
4.正定矩阵。特征值为整数,子行列式为整数,主元为整数等等性质
5.相似矩阵。
B=M−1AM
B
=
M
−
1
A
M
.重要性质,特征值相等
6.奇异值分解。
A=U∑VT
A
=
U
∑
V
T
第一道题(微分方程)
A为奇异矩阵,得出 λ1=0 λ 1 = 0 ,由于A为反对称矩阵, λ2,λ3为复数 λ 2 , λ 3 为 复 数
通过对u(t)的观察,不难看出它是一个周期函数
问,什么时候u(t)回到初始值?
一个重要性质:
满足
AAT=ATA
A
A
T
=
A
T
A
的矩阵,它的特征向量正交
那么满足这个性质的矩阵有哪些呢?对称对阵、反对称矩阵、正交矩阵(例如Q)
回到问题。如何求
eAt
e
A
t
?(因为我们知道
u(t)=eAtu(0)
u
(
t
)
=
e
A
t
u
(
0
)
, 所以我们对
eAt
e
A
t
感兴趣)
我们知道,假设A有足够多的特征向量(这个例子中A有3个不同的特征值,特征向量足够),那么A可以对角化,即A可以表示为
A=SΛS−1
A
=
S
Λ
S
−
1
,那么
eAt=SeΛtS−1
e
A
t
=
S
e
Λ
t
S
−
1
,于是我们可以根据这个公式,求出c和x后代入得到u(t)的矩阵表示
第二道题
一未知矩阵A,已知特征值(
λ2
λ
2
未知),和特征向量,回答下列问题:
问题1,该矩阵是否对于任意c都可对角化?
是。因为特征向量正交,独立
问题2,矩阵是否对称?
当c为实数时(回忆下对称矩阵的性质,特征值为实数,特征向量正交)
问题3,是否正定?
如果c >= 0,可以是半正定矩阵(由于
λ1=0
λ
1
=
0
,而正定矩阵要求特征值都大于0)
问题4,是否是马尔科夫矩阵?
否。马尔科夫矩阵要求,其中一个特征值为1,其余特征值小于1
问题5,是否为投影矩阵?
当c = 2或者0时。我们知道投影矩阵满足
P2=P(即再次投影无变化)
P
2
=
P
(
即
再
次
投
影
无
变
化
)
,可得
λ2=λ,λ=1或0
λ
2
=
λ
,
λ
=
1
或
0
,可以得出c
第三道题(奇异值分解,SVD)
回忆一下SVD的核心公式:
A=U∑VT
A
=
U
∑
V
T
,其中U和A为标准正交矩阵(正交且长度为1),
∑
∑
为对角矩阵
如何根据这个公式推到出U和V?关键是
ATA和AAT
A
T
A
和
A
A
T
ATA=(U∑VT)T(U∑VT)=(V∑TUT)(U∑VT)=V∑2VT(由于U和V是标准正交矩阵,UTU=I,VTV=I)
A
T
A
=
(
U
∑
V
T
)
T
(
U
∑
V
T
)
=
(
V
∑
T
U
T
)
(
U
∑
V
T
)
=
V
∑
2
V
T
(
由
于
U
和
V
是
标
准
正
交
矩
阵
,
U
T
U
=
I
,
V
T
V
=
I
)
AAT=(U∑VT)(U∑VT)T=(U∑VT)(V∑TUT)=U∑2UT
A
A
T
=
(
U
∑
V
T
)
(
U
∑
V
T
)
T
=
(
U
∑
V
T
)
(
V
∑
T
U
T
)
=
U
∑
2
U
T
通过这两个公式,我们知道V为 ATA A T A 的特征向量矩阵(矩阵分解的公式, A=Q∑QT A = Q ∑ Q T ),U为 AAT A A T 的特征向量矩阵,假设 σ1,σ2,.... σ 1 , σ 2 , . . . . 为对角矩阵 ∑ ∑ 的值,那么 σ σ 对应 ATA(或者AAT)的特征值的开方 A T A ( 或 者 A A T ) 的 特 征 值 的 开 方 ,即 σ2i=λi(ATA) σ i 2 = λ i ( A T A )
我们来深刻理解一下 A=U∑VT A = U ∑ V T 这个公式,这个公式实际上的意义是 AVi=σiUi A V i = σ i U i ,即我们可以通过投影矩阵A得到其行空间对应的列空间的向量,而式子中的 σi σ i 为对应的放缩因子(由于投影后的长度可能不一致,因此需要通过一个常数项来缩放)
那么问题来了
给定矩阵分解形式如上所示,可以得出A有哪些性质?
可逆。由于
σ
σ
不等于0且m = n,因此矩阵可逆
那么下面这个矩阵呢?
奇异并且秩为1,
dim(N)=1
d
i
m
(
N
)
=
1
.
对于这个矩阵,零空间中的向量是什么?
v2
v
2
,回想一下,当
σ
σ
为0时,对应的
v和u
v
和
u
我们是在零空间和转置零空间中找到的
第四道题
假设A为对称且正交矩阵,回答下述问题
1.特征值
由于对称,我们知道特征值为实数。由于正交矩阵,有
QTQ=I
Q
T
Q
=
I
,而矩阵的转置特征值是不变的,可以得到
|λ|=1
|
λ
|
=
1
,总结即为,
λ
λ
为1或-1
也可以这样想,正交矩阵不改变向量的模的大小
2.是否为正定矩阵?不是
3.是否可对角化?是。正交矩阵都可对角化(记得之前的结论么,正交矩阵的特征向量矩阵正交)
4.是否可逆?是。因为是正交矩阵,列向量独立
5.
12(A+I)是否为投影矩阵?
1
2
(
A
+
I
)
是
否
为
投
影
矩
阵
?
回想下,投影矩阵的性质是什么?对称,显然满足,那么来看看
P2=P
P
2
=
P
满不满足
14(A2+2A+I)=14(I+2A+I)=12A+I(由于A对称且正交,因此A=AT=A−1,可以得到ATA=I)
1
4
(
A
2
+
2
A
+
I
)
=
1
4
(
I
+
2
A
+
I
)
=
1
2
A
+
I
(
由
于
A
对
称
且
正
交
,
因
此
A
=
A
T
=
A
−
1
,
可
以
得
到
A
T
A
=
I
)
,得证
此矩阵的特征值是什么?0和1