线性代数及其应用:第五章 特征值与特征向量


  前言:这篇blog是《 Linear Algebra and Its Applications》第五章的一些学习笔记。

第五章 特征值与特征向量

1.特征值与特征向量

  对方阵 A n × n A_{n\times n} An×n,其特征方程表示为 A x = λ x     ( x ≠ 0 ) Ax=\lambda x~~~(x \neq 0) Ax=λx   (x̸=0)其中 λ \lambda λ是标量,也叫特征值(特征根,本征值), x x x是向量,也叫特征向量。

  其几何意义:特征向量的方向是一个特殊的方向,在这个方向上进行矩阵 A A A的线性变换,等于在这个方向伸缩 λ \lambda λ倍。

  方阵一定有特征值,因为方阵的特征多项式在复数域内一定能分解成一次因式,但是方阵不一定有实特征值

1.1. 求解特征值与特征向量

  求解 ( A − λ I ) x = 0 (A-\lambda I)x=0 (AλI)x=0要求 x x x A − λ I A-\lambda I AλI的零空间上,所以零空间不为0,所以 d e t ( A − λ I ) = 0 det(A-\lambda I)=0 det(AλI)=0求解该方程即可得到特征值 λ \lambda λ,把 λ \lambda λ代回 ( A − λ I ) x = 0 (A-\lambda I)x=0 (AλI)x=0求解该方程得到特征向量 x x x

1.2. 性质

  假设 A n × n = { a i j } A_{n \times n}=\{a_{ij}\} An×n={ aij}有特征值 λ n \lambda_{n} λn与特征向量 x n x_{n} xn,则 ∣ a 11 − λ     a i j   a 22 − λ         …   a i j     a n n − λ ∣ = ( λ 1 − λ ) ( λ 2 − λ ) … ( λ n − λ ) \left | \begin{matrix} a_{11}-\lambda & ~ & ~ & a_{ij} \\ ~ & a_{22}-\lambda & ~ & ~ \\ ~ & ~ & \dots & ~ \\ a_{ij} & ~ & ~ & a_{nn}-\lambda \\ \end{matrix}\right | =(\lambda_{1}-\lambda)(\lambda_{2}-\lambda)\dots (\lambda_{n}-\lambda) a11λ  aij a22λ     aij  annλ=(λ1λ)(λ2λ)(λnλ)

下面证明性质会用到上式。

性质一: λ 1 ⋅ λ 2 ⋅ λ 3 … λ n = d e t ( A ) \lambda_{1}·\lambda_{2}·\lambda_{3}\dots\lambda_{n}=det(A) λ1λ2λ3λn=det(A)
证明:把 λ = 0 \lambda=0 λ=0代入上式即可证明。

性质二: λ 1 + λ 2 + λ 3 + ⋯ + λ n = T r ( A ) = a 11 + a 22 + ⋯ + a n n \lambda_{1}+\lambda_{2}+\lambda_{3}+\dots+\lambda_{n}=Tr(A)=a_{11}+a_{22}+\dots +a_{nn} λ1+λ2+λ3++λn=Tr(A)=a11+a22++ann
证明:假设把上式等号左右展开,看 λ n − 1 \lambda^{n-1} λn1项的系数,左边 = ( − 1 ) n − 1 ( a 11 + a 22 + ⋯ + a n n ) λ n − 1 =(-1)^{n-1}(a_{11}+a_{22}+\dots +a_{nn})\lambda^{n-1} =(1)n1(a11+a22++ann)λn1=右边= ( − 1 ) n − 1 ( λ 1 + λ 2 + ⋯ + λ n ) λ n − 1 (-1)^{n-1}(\lambda_{1}+\lambda_{2}+\dots +\lambda_{n})\lambda^{n-1} (1)n1(λ1+λ2++λn)λn1,证毕。

性质三: f ( A ) f(A) f(A)的特征值是 f ( λ i ) f(\lambda_{i}) f(λi) f ( ⋅ ) f(·) f()是多项式函数
证明: f ( A ) = a n A n + a n − 1 A n − 1 + ⋯ + a 1 A + a 0 f(A)=a_{n}A^{n}+a_{n-1}A^{n-1}+\dots +a_{1}A+a_{0} f(A)=anAn+an1An1++a1A+a0两边右乘特征向量 x x x
f ( A ) x = a n A n x + a n − 1 A n − 1 x + ⋯ + a 2 A 2 x + a 1 A x + a 0 x = a n λ A n − 1 x + a n − 1 λ A n − 2 x + ⋯ + a 2 λ A x + a 1 λ x + a 0 x = a n λ 2 A n − 2 x + a n − 1 λ 2 A n − 3 x + ⋯ + a 2 λ 2 x + a 1 λ x + a 0 x … = a n λ n x + a n − 1 λ n − 1 x + ⋯ + a 2 λ 2 x + a 1 λ x + a 0 x = f ( λ ) x \begin{aligned} f(A)x & =a_{n}A^{n}x+a_{n-1}A^{n-1}x+\dots +a_{2}A^{2}x+a_{1}Ax+a_{0}x \\ & = a_{n}\lambda A^{n-1}x+a_{n-1}\lambda A^{n-2}x+\dots +a_{2}\lambda Ax+a_{1}\lambda x+a_{0}x \\ & = a_{n}\lambda^{2} A^{n-2}x+a_{n-1}\lambda^{2} A^{n-3}x+\dots +a_{2}\lambda^{2}x+a_{1}\lambda x+a_{0}x \\ & \dots \\ & = a_{n}\lambda^{n}x+a_{n-1}\lambda^{n-1}x+\dots +a_{2}\lambda^{2}x+a_{1}\lambda x+a_{0}x \\ & = f(\lambda)x \end{aligned} f(A)x=anAnx+an1An1x++a2A2x+a1Ax+a0x=anλAn1x+an1λAn2x++a2λAx+a1λx+a0x=anλ2An2x+an1λ2An3x++a2λ2x+a1λx+a0x=anλnx+an1λn1x++a2λ2x+a1λx+a0x=f(λ)x

性质四:不同特征根对应特征向量一定线性无关。
证明:设 λ 1 \lambda_{1} λ1的一个特征向量 x 1 x_{1} x1 λ 2 \lambda_{2} λ2的一个特征向量 x 2 x_{2} x2 λ 1 ≠ λ 2 \lambda_{1} \neq \lambda_{2} λ1̸=λ2
(1) c 1 x 1 + c 2 x 2 = 0 c_{1}x_{1}+c_{2}x_{2}=0\tag{1} c1x1+c2x2=0(1)(1)左乘A得 (2) c 1 A x 1 + c 2 A x 2 = c 1 λ 1 x 1 + c 2 λ 2 x 2 = 0 c_{1}Ax_{1}+c_{2}Ax_{2}=c_{1}\lambda_{1}x_{1}+c_{2}\lambda_{2}x_{2}=0\tag{2} c1Ax1+c2Ax2=c1λ1x1+c2λ2x2=0(2)

(1)左乘 λ 1 \lambda_{1} λ1 (3) c 1 λ 1 x 1 + c 2 λ 1 x 2 = 0 c_{1}\lambda_{1}x_{1}+c_{2}\lambda_{1}x_{2}=0 \tag{3} c1λ1x1+c2λ1x2=0(3)

(2)-(3)得 c 2 ( λ 2 − λ 1 ) x 2 = 0 c_{2}(\lambda_{2}-\lambda_{1})x_{2}=0 c2(λ2λ1)x2=0,由于 λ 2 ≠ λ 1 \lambda_{2}\neq \lambda_{1} λ2̸=λ1 x 2 ≠ 0 x_{2}\neq 0 x2̸=0,故 c 2 = 0 c_{2}=0 c2=0,重复上面方法,消去 c 2 c_{2} c2,可得 c 1 = 0 c_{1}=0 c1=0,故(1)式子成立一定有 c 1 = c 2 = 0 c_{1}=c_{2}=0 c1=c2=0,所以 x 1 , x 2 x_{1},x_{2} x1,x2线性无关。

性质五:Hamilton-Cayley定理,设 f ( λ ) = ∣ λ E − A ∣ = λ n + b 1 λ n − 1 + ⋯ + b n − 1 λ + b n f(\lambda)=|\lambda E-A|=\lambda^{n}+b_{1}\lambda^{n-1}+\dots +b_{n-1}\lambda+b_{n} f(λ)=λEA=λn+b1λn1++bn1λ+bn f ( A ) = ∣ λ E − A ∣ = A n + b 1 A n − 1 + ⋯ + b n − 1 A + b n E = 0 f(A)=|\lambda E-A|=A^{n}+b_{1}A^{n-1}+\dots +b_{n-1}A+b_{n}E=0 f(A)=λEA=An+b1An1++bn1A+bnE=0

2. 特征值分解

2.1. 特征值分解:

  设 A A A的特征值为 λ n \lambda_{n} λn,特征向量为 x n x_{n} xn,令 Λ = [ λ 1     0   λ 2         …   0     λ n ] \Lambda =\left [ \begin{matrix} \lambda_{1} & ~ & ~ & 0 \\ ~ & \lambda_{2} & ~ & ~ \\ ~ & ~ & \dots & ~ \\ 0 & ~ & ~ & \lambda_{n} \\ \end{matrix} \right ] Λ=λ1  0 λ2     0  λn

S = [ ∣ ∣   ∣ x 1 x 2 … x n ∣ ∣   ∣ ] S=\left [ \begin{matrix} | & | & ~ & | \\ x_{1} & x_{2} & \dots & x_{n} \\ | & | & ~ & | \\ \end{matrix} \right ] S=x1x2  xn

A ⋅ S = ( A ⋅ x 1 , A ⋅ x 2 , … , A ⋅ x n ) = ( λ 1 ⋅ x 1 , λ 2 ⋅ x 2 , … , λ n ⋅ x n ) = S ⋅ Λ \begin{aligned} A·S & =(A·x_{1}, A·x_{2}, \dots ,A·x_{n}) \\ & = (\lambda_{1} ·x_{1}, \lambda_{2} ·x_{2}, \dots ,\lambda_{n} ·x_{n})=S·\Lambda \end{aligned} AS=(Ax1,Ax2,,Axn)=(λ1x1,λ2x2,,λnxn

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值