医疗图像自动轮廓勾画

        医疗图像自动轮廓勾画(也称为自动分割)是一个重要的任务,旨在从医学影像数据中自动提取出感兴趣的解剖结构或病变区域。这项技术在医学诊断、治疗规划和随访中起着至关重要的作用。

文末附基于Keras和TensorFlow的示例代码,用于使用U-Net进行医疗图像自动轮廓勾画代码

常用方法

  1. 传统方法

    • 阈值法:通过设定灰度值阈值,将图像分割为前景和背景。
    • 区域生长法:从种子点开始,根据相似性标准将相邻像素合并到区域中。
    • 活动轮廓模型(Snake):利用能量函数最小化的方法,使轮廓线贴合目标边界。
  2. 机器学习方法

    • 支持向量机(SVM):利用特征向量训练分类器,对每个像素进行分类。
    • 随机森林:基于决策树的集成方法,通过结合多个树的输出进行分割。<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程日记✧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值