医疗图像自动轮廓勾画(也称为自动分割)是一个重要的任务,旨在从医学影像数据中自动提取出感兴趣的解剖结构或病变区域。这项技术在医学诊断、治疗规划和随访中起着至关重要的作用。
文末附基于Keras和TensorFlow的示例代码,用于使用U-Net进行医疗图像自动轮廓勾画代码。
常用方法
-
传统方法:
- 阈值法:通过设定灰度值阈值,将图像分割为前景和背景。
- 区域生长法:从种子点开始,根据相似性标准将相邻像素合并到区域中。
- 活动轮廓模型(Snake):利用能量函数最小化的方法,使轮廓线贴合目标边界。
-
机器学习方法:
- 支持向量机(SVM):利用特征向量训练分类器,对每个像素进行分类。
- 随机森林:基于决策树的集成方法,通过结合多个树的输出进行分割。<