基于敏锐背景响应和自蒸馏学习的弱监督时序动作定位 SODA: WTAL Based on Astute Background Response and Self-Distillation Learni

SODA方法针对弱监督时序动作定位的过度定位、联合定位和欠定位挑战,提出机敏的背景响应策略抑制背景响应,自蒸馏学习增强模型发现完整动作框架。背景响应策略通过背景帧的零约束减少模型的过度定位;自蒸馏学习利用多个网络的集体智慧提升定位准确性。
摘要由CSDN通过智能技术生成

        “SODA: Weakly Supervised Temporal Action Localization Based on Astute Background Response and Self-Distillation Learning”提出了一种创新方法来解决弱监督时间动作定位中过度定位、联合定位和欠定位的挑战。 作者介绍了两种主要策略:敏锐的背景响应自我蒸馏学习。 这些策略旨在分别有效抑制背景响应并增强模型发现完整动作框架的能力。 


 三个挑战以及解决策略

弱监督时序动作定位任务的三个挑战:(a)过度定位、(b)联合定位、(c)欠定位

(a)(b)由于背景抑制不足导致,作者提出了机敏的背景响应策略。

(c)由于动作发现不足,作者提出了自蒸馏学习策略。


单帧注释情况

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程日记✧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值