论文链接:https://arxiv.org/abs/2203.13609
代码地址:https://github.com/zhang-can/UP-TAL
主要贡献:
- 首次面向时序行为定位任务进行无监督预训练(UP-TAL);
- 为此,提出了一个新的代理任务叫做“伪动作定位”(Pseudo Action Localization,PAL),并根据 TAL 任务特点,设计了一种时序等变学习(temporal equivariance learning)范式;
- 实验表明在下游时序行为定位任务上超过了主流无监督预训练方法,甚至超过一些有监督预训练方法。下游性能测评任务包括:时序行为检测(Temporal Action Detection,TAD)、行为提议生成(Action Proposal
Generation,APG)以及视频文本定位(Video Grounding,VG)。