可以本地部署的最强OCR大模型:OlmOCR

allenai/olmocr是由Allen人工智能研究所(AI2)开发的一个开源工具包,旨在高效地将PDF和其他文档转换为结构化的纯文本,同时保持自然阅读顺序。

核心技术:

1、使用名为olmOCR-7B-0225-preview的视觉语言模型(VLM),这是基于Qwen2-VL-7B-Instruct训练而成的。
2、该模型经过约25万页多样化PDF内容(包括扫描和基于文本的)的训练,这些内容使用GPT-4o标注并作为olmOCR-mix-0225数据集发布。

主要功能:

1、高效批量处理:使用SGLang优化推理管道,能以极低的成本处理大量文档。
2、文档锚定:提取每页中显著元素(如文本块和图像)的坐标,并将其与从PDF二进制文件中提取的原始文本一起注入。
3、支持本地和集群使用:可在单机GPU上运行,也支持使用AWS S3进行多节点并行处理。

性能和优势:

1、准确性高:在人工评估中,olmOCR在各种PDF提取技术的ELO评级中排名最高。
2、提升下游任务:使用olmOCR提取的文本训练语言模型,在多个AI基准任务中平均提高了1.3个百分点的准确率。

使用方法:

import torch
import base64
import urllib.request

from io import BytesIO
from PIL import Image
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration

from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts import build_finetuning_prompt
from olmocr.prompts.anchor import get_anchor_text

# Initialize the model

model = Qwen2VLForConditionalGeneration.from_pretrained(“allenai/olmOCR-7B-0225-preview”, torch_dtype=torch.bfloat16).eval()
processor = AutoProcessor.from_pretrained(“Qwen/Qwen2-VL-7B-Instruct”)
device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”)
model.to(device)

# Grab a sample PDF
urllib.request.urlretrieve(“https://molmo.allenai.org/paper.pdf”, “./paper.pdf”)

# Render page 1 to an image
image_base64 = render_pdf_to_base64png(“./paper.pdf”, 1, target_longest_image_dim=1024)

# Build the prompt, using document metadata
anchor_text = get_anchor_text(“./paper.pdf”, 1, pdf_engine=“pdfreport”, target_length=4000)
prompt = build_finetuning_prompt(anchor_text)

# Build the full prompt
messages = [
{
“role”: “user”,
“content”: [
{“type”: “text”, “text”: prompt},
{“type”: “image_url”, “image_url”: {“url”: f"data:image/png;base64,{image_base64}"}},
],
}
]

# Apply the chat template and processor
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
main_image = Image.open(BytesIO(base64.b64decode(image_base64)))

inputs = processor(
text=[text],
images=[main_image],
padding=True,
return_tensors=“pt”,
)
inputs = {key: value.to(device) for (key, value) in inputs.items()}

# Generate the output
output = model.generate(
**inputs,
temperature=0.8,
max_new_tokens=50,
num_return_sequences=1,
do_sample=True,
)

# Decode the output
prompt_length = inputs[“input_ids”].shape[1]
new_tokens = output[:, prompt_length:]
text_output = processor.tokenizer.batch_decode(
new_tokens, skip_special_tokens=True
)

print(text_output)
#[‘{“primary_language”:“en”,“is_rotation_valid”:true,“rotation_correction”:0,“is_table”:false,“is_diagram”:false,“natural_text”:"Molmo and PixMo:\nOpen Weights and Open Data\nfor State-of-the’]

识别效果:

img

img

总结:

支持结构化精准提取复杂PDF文件内容!完美识别中英文文档、模糊扫描件与复杂表格!本地部署与实际测试全过程!医疗法律行业必备!轻松应对企业级PDF批量转换需求!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### olmOCR Deployment Guide #### 使用 Operator Lifecycle Manager (OLM) 部署 OCR 应用程序 Operator Lifecycle Manager 是 Kubernetes 上用于管理和操作应用程序的一种方法。对于部署 OLMOCR,通常涉及以下几个方面: - **安装 OLM**: 如果集群上还没有安装 OLM,则需要先通过官方文档指导完成其安装过程[^1]。 - **准备自定义资源定义(CRD)**: 对于特定的应用程序如 OCR, 可能会存在对应的 CRD 文件来描述该应用特有的配置项。 - **创建 Namespace 和 ServiceAccount**: 为了隔离不同项目的运行环境以及权限管理,建议为 OCR 创建独立的名字空间和服务账户。 - **部署 Operator**: 获取适用于 OCR 的 Operator 并将其部署至上述命名空间中。这一步骤可以通过 YAML 文件或者 Helm Chart 来实现。 - **实例化 Application**: 利用之前提到过的 CRD 定义,在目标名字空间下创建具体的 OCR 实例对象,从而触发 Operator 自动化地拉取镜像并启动 Pod 进行服务提供。 ```yaml apiVersion: operators.coreos.com/v1alpha2 kind: Subscription metadata: name: ocr-operator-subscription spec: channel: stable installPlanApproval: Automatic name: ocr-operator source: community-operators sourceNamespace: openshift-marketplace --- apiVersion: apps.openocr.io/v1beta1 kind: OpenOcrInstance metadata: name: example-openocr-instance spec: replicas: 3 image: registry.example.com/openocr:v0.1.0 ``` 当遇到类似 `kubectl rollout undo` 或者其他命令执行失败的情况时,可以尝试使用 `kubectl describe deployments <deployment-name>` 查看更详细的错误日志以便排查问题所在[^2]。如果是在创建 Deployment 期间遇到了类似于 `"Deployment in version "v1" cannot be handled"` 的错误提示,则可能是由于 API 版本不兼容或者是 Yaml 文件格式存在问题所引起的,此时应仔细核对使用的 API 版本是否正确无误,并确保 yaml 文件语法正确[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值