深度学习视觉应用全解:数据集、目标检测、语义分割与评价指标

在深度学习视觉领域,图像分类已经不再是唯一焦点,更多任务如目标检测语义分割等,正在成为计算机视觉应用的主力军。本篇博客将系统梳理以下四个核心主题:

  • 常用视觉数据集

  • 目标检测与YOLO

  • 全卷积网络与语义分割

  • 视觉任务常用评价指标

  • 一、视觉任务中的常用数据集

    1. MNIST & Fashion-MNIST

  • MNIST:0~9 手写数字识别,28×28 像素灰度图。

  • Fashion-MNIST:由 Zalando 提供,服饰类替代版 MNIST,同样为28×28灰度图,用于测试图像分类模型泛化能力。

2. CIFAR-10

  • 共 60000 张 32×32 彩色图像,分属 10 类,如飞机、汽车、猫、狗等。

  • 训练集 50000 张,测试集 10000 张。

3. PASCAL VOC

  • 全称:Visual Object Classes

  • 包含 20 类图像,用于目标分类、检测和分割。

  • 使用 XML 文件进行标注,常见于经典检测算法。

4. MS COCO

  • Microsoft COCO(Common Objects in Context)

  • 80 类别,超过 33 万张图像,广泛用于目标检测和实例分割。

  • 提供详细的 instance segmentation 和 keypoints 标注。

5. ImageNet 与 JFT-300M

  • ImageNet:21K 类别,1400 万张图片,ILSVRC 竞赛推动深度学习快速发展。

  • JFT-300M:谷歌内部数据集,3亿张图像,10亿个标签,极其庞大。


二、视觉任务评价指标详解

1. 基本概念

指标含义
TP正确预测为正类
FP错误预测为正类
FN错误预测为负类
TN正确预测为负类

2. 常用指标公式

  • 精确率 Precision (P) = TP / (TP + FP)

  • 召回率 Recall (R) = TP / (TP + FN)

  • 准确率 Accuracy = (TP + TN) / 总数

3. P-R 曲线与平均精度(AP)

  • P-R 曲线描述 Precision 与 Recall 的变化关系

  • AP(Average Precision)为 P-R 曲线下的面积

  • 多类任务中取每类的 AP 平均值为 mAP


三、目标检测与 YOLO 方法

1. 问题定义

目标检测不仅要求识别“是什么”,更要知道“在哪”。一个检测模型应能输出物体的 类别位置框坐标

2. 演进路径

从 R-CNN 到 YOLO 的演进过程:

R-CNN → Fast R-CNN → Faster R-CNN → YOLO 系列

3. YOLO 简介

  • YOLO(You Only Look Once)是一种端到端目标检测模型。

  • 将图像划分为网格,每个网格负责预测包含物体的概率及边界框。

4. 损失函数设计(简述)

YOLO 的损失函数综合考虑三项:

  • 边界框回归误差

  • 置信度误差

  • 类别预测误差


四、全卷积网络(FCN)与语义分割

1. 什么是语义分割?

对图像中每个像素进行分类,使每个像素都被赋予一个语义标签。

2. FCN:语义分割的基石

  • 将传统 CNN 中的全连接层替换为卷积层,从而实现像素级预测。

  • 使用上采样层恢复空间分辨率。

3. DeepLab v3:现阶段主流方法

  • 基于空洞卷积(dilated conv)

  • 使用 ASPP(Atrous Spatial Pyramid Pooling)多尺度感知信息


总结

本讲义深入浅出地展示了深度学习在视觉领域的经典应用,建议初学者按照以下路径深入学习:

  1. 掌握常用数据集结构与加载方式

  2. 理解精确率、召回率、AP、mAP 等指标含义

  3. 学习 YOLO 等端到端检测模型的原理

  4. 理解 FCN 和 DeepLab 等语义分割技术核心思想

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值