本文仅供学习使用
本文参考:
《空间机构的分析与综合(上册)》-张启先
,感谢张启先先生对机构学的卓越贡献,希望下册有见天明之日!
《高等机构学》-白师贤
《高等空间机构学》-黄真
《机构运动微分几何学分析与综合》-王德伦
Ch0X-2 空间闭式运动链的自由度公式及计算
为了减少运动链的自由度,必须对空间开式运动链的末杆,采取固定机架闭合成封闭形的办法,所以机构多为闭式运动链。
由简单开式链闭合形成的机构称为单封闭形机构,而由复杂开式链闭合形成的机构则称多封闭形复杂机构。
1. 空间单封闭形机构
1.1 空间单封闭形机构的自由度公式
简单开式链闭合成单封闭形后将减少 λ \lambda λ个自由度——单闭合引起 λ \lambda λ个约束。空间简单开式链闭合成单封闭形机构所失去的自由度或受到的闭合约束数 λ \lambda λ为: 2 ≤ λ ≤ 6 2\le \lambda \le 6 2≤λ≤6
空间单封闭形机构的自由度公式为: F = ∑ f − λ = ∑ k = 1 λ − 1 k p k − λ F=\sum{f}-\lambda =\sum\limits_{k=1}^{\lambda -1}{k{{p}_{k}}}-\lambda F=∑f−λ=k=1∑λ−1kpk−λ
1.2 空间单封闭形机构的自由度计算
1.2.1 闭合约束数的确定和过约束机构的特点
利用上式计算单封闭形机构的自由度时,主要问题是确定封闭形的闭合约束数
λ
\lambda
λ——断开机架法:由相应的开式链的末杆0‘和机架0固接起来:
不难看出末杆0‘的自由度为6——即将开式链末杆0‘与机架0固接形成单封闭形七杆机构的闭合约束数为
λ
=
6
\lambda=6
λ=6,机构的自由度为:
F
=
∑
f
−
λ
=
7
−
6
=
1
F=\sum{f}-\lambda =7-6=1
F=∑f−λ=7−6=1,即只需一个原动件就有确定运动;
- 闭合约束数 λ = 3 \lambda =3 λ=3的单封闭形机构中,以各种一般平面机构和球面机构为最常用。
球面机构例子 | ||
---|---|---|
-
λ < 6 \lambda <6 λ<6的机构常称为过约束机构——各运动副轴线都有某些特殊配置(平行、垂直、相交),而使断开机架后末杆缺少(各杆共同缺少)一些独立的基本转动和基本移动,有时称: m = 6 − λ m=6-\lambda m=6−λ为公共约束。过约束机构具有两个特点: 1. 由于各运动副自由度的总和较少,过约束机构的结果比较简单同时支承刚度较大;2. 各运动副轴线间或各构件尺度都要遵从某些特殊关系,过约束机构对制造安装也就比较敏感,容易出现运动卡死现象( λ = 6 \lambda =6 λ=6的一般空间机构则不同,运动非常灵活可靠,不会因制造安装误差而出现运动卡死的现象)
-
在应用 λ = 3 \lambda =3 λ=3的平面机构时,对有些场合(如制造安装误差较大或构件变形影响较大),为了保证机构传递运动的可靠性,宁可采用多自由度的球面副和圆柱副或采用足够多的转动副,设计成为一般空间机构。对于球面机构,有时也作类似处理。
1.2.2 局部自由度的确定
局部自由度——不影响机构运动
-
局部转动自由度:
-
局部移动自由度:
与局部自由度有关的局部转动或局部移动,在几何运动上是无法确定的。
在高速运转中,不必要的局部运动可能引起噪音、振动等不良现象,因此在高速机械中不宜采用有局部自由度的机构。
1.2.3 消极自由度的考虑
消极自由度时在运动上或重复或不起作用的自由度。
-
重复:
由于构件2、3之间的圆柱副轴线通过球面副的中心,所以构件2对3的一个相对转动和构件2对1的三个转动之一是重复的转动,这两个重复的相对转动只需一个运动参数即可确定。
也可按前述局部自由度进行分析,而认为构件2有绕构件3转动的局部自由度 -
不起作用
球面副D实际上仅起一个转动副的作用,而球面副的令两个转动自由度则为运动上不起作用的消极自由度。
如果不能预先判断为平面机构,则球面副中的消极自由度就不易直接发现。这时仍宜采用断开机架法进行分析:在计算机构自由度的过程中,对不起作用的消极自由度就不易直接发现,但在计算的过程中,也不会造成分析计算错误——与作用重复的消极自由度不同。
消极自由度在机构运动中虽不起作用,但有时可用来补偿制造、装配中的误差。
2. 空间多封闭形机构
为了满足传递运动和传递力的各种复杂要求,往往需要采用由多个多两个简单封闭形组成的复杂机构。假设所含
λ
=
2
,
.
.
.
,
6
\lambda =2,...,6
λ=2,...,6的独立封闭形的个数分别为
q
2
,
.
.
.
,
q
6
{{q}_{2}},...,{{q}_{6}}
q2,...,q6,可得多封闭形机构的自由度公式(机构的一般组成公式)如下:
F
=
(
p
1
+
2
p
2
+
3
p
3
+
4
p
4
+
5
p
5
−
f
0
)
−
(
2
q
2
+
3
q
3
+
4
q
4
+
5
q
5
+
6
q
6
−
λ
0
)
=
∑
k
=
1
5
k
p
k
−
∑
λ
=
2
6
λ
q
λ
−
f
0
+
λ
0
F=({{p}_{1}}+2{{p}_{2}}+3{{p}_{3}}+4{{p}_{4}}+5{{p}_{5}}-{{f}_{0}})-(2{{q}_{2}}+3{{q}_{3}}+4{{q}_{4}}+5{{q}_{5}}+6{{q}_{6}}-{{\lambda }_{0}})=\sum\limits_{k=1}^{5}{k{{p}_{k}}}-\sum\limits_{\lambda =2}^{6}{\lambda {{q}_{\lambda }}}-{{f}_{0}}+{{\lambda }_{0}}
F=(p1+2p2+3p3+4p4+5p5−f0)−(2q2+3q3+4q4+5q5+6q6−λ0)=k=1∑5kpk−λ=2∑6λqλ−f0+λ0
其中,
f
0
{{f}_{0}}
f0为运动副中的消极自由度,
λ
0
{{\lambda }_{0}}
λ0为封闭形中的消极约束数;由于没有考虑机构受力与摩擦的影响,机构自由度的计算结果有时可能不符合实际情况。
消极约束即重复约束,一般情况下各封闭形的闭合约束方程互不相同,而当机构中存在一些特殊尺度关系而出现几何相关甚至相似封闭形时,由这些封闭形列出的闭合约束方程式中才有可能出现个别重复的约束方程式(转角等)
2.1 独立的封闭形
在计算复杂机构的自由度之前,首先需要将复杂机构分为若干简单独立的封闭形——至少含有一个不在其他封闭形中出现的新的运动副。
机构 | 封闭形 |
---|---|
0-1-2-3-0; 0-3-4-5-0 |
2.2 空间多封闭形机构的自由度计算
对多封闭形机构的独立封闭形进行考察,判断各封闭形的闭合约束数 λ \lambda λ,并留意是否有消极自由度 f 0 {{f}_{0}} f0和消极约束 λ 0 {{\lambda }_{0}} λ0的出现。( λ = 6 \lambda=6 λ=6的任意空间封闭形与 λ = 3 \lambda=3 λ=3的任意平面封闭形和球面封闭形(转动副轴线汇交一点)在复杂机构中经常遇见)
机构 | 封闭形 | 自由度 |
---|---|---|
0-6-5-1-0: λ = 3 + 0 + 3 = 6 \lambda=3+0+3=6 λ=3+0+3=6; 0-5-4-3-0: λ = 3 + 0 + 3 = 6 \lambda=3+0+3=6 λ=3+0+3=6; 0-3-2-1-0: λ = 2 + 0 + 1 = 3 \lambda=2+0+1=3 λ=2+0+1=3; | [ F = ( 3 + 2 × 1 + 3 × 5 − 2 ) − ( 3 × 1 + 6 × 2 ) = 3 [F=(3+2\times 1+3\times 5-2)-(3\times 1+6\times 2)=3 [F=(3+2×1+3×5−2)−(3×1+6×2)=3 | |
A-B-C: λ = 2 + 0 + 1 = 3 \lambda=2+0+1=3 λ=2+0+1=3; A-B-D: λ = 2 + 0 + 1 = 3 \lambda=2+0+1=3 λ=2+0+1=3 | F = 6 − 3 × 2 + 1 = 1 F=6-3\times 2+1=1 F=6−3×2+1=1(消极约束) | |
3. 几个例子
这几个例子找国内教机械原理的老师,可能80%算不明白