[足式机器人]Part2 Dr. CAN学习笔记 - Ch02动态系统建模与分析

本文仅供学习使用
本文参考:
B站:DR_CAN
控制之美(卷1)


1. 课程介绍

在这里插入图片描述
控制理论的研究对象是动态系统(Dynamic System)动态系统是指状态随时间变化的系统,其特点为系统的状态变量(State Variable)是时间的函数。
在本书中,若无特别说明,研究的动态系统特指线性时不变系统(Linear Time InvariantSystem)。其中,线性指系统的输入与输出是线性映射的,符合叠加原理(Superposition Principle)

时不变性是指如果系统的输入信号延迟了时间 T T T,那么系统的输出也会延迟时间 T T T

控制理论提供了一种思维方式,同时作为一种强大的工具让我们能够理解和控制复杂的系统。

控制理论的应用已经深人到我们生活的方方面面。无论是让电梯平稳地运行,还是调节空调的温度和湿度,或者是驾驶汽车进行定速巡航或前车跟随,以及让工厂的生产线有序进行,都离不开控制理论的应用。对于这些系统的控制,我们不仅关心它们能不能安全正常地运行,更关心它们的运行是否高效,以及是否达到了效率和能耗的最优,由此我们引人最优控制理论。最优控制不仅关心如何使系统保持稳定,更关心如何在保证稳定的同时,使系统的某些性能指标达到最优。而在系统的状态不直接可观的情况下,状态估计算法就显得尤为重要,它能够在噪声的影响下,准确地估计系统的状态。最优控制理论与状态估计算法的结合为控制器设计和应用提供了一套强大的工具。

例如在小车的控制问题中,我们不仅希望小车能够停在目标位置,更希望它能够快速地到达目标位置,并且在这个过程中消耗最小的能量。为了实现这些目标,需要引人最优控制理论。同样在实际应用中,我们面临的另一个问题是,动态模型和传感器都不是完美的。动态模型可能存在建模误差,而传感器的测量结果也可能存在噪声干扰。因此,我们不能直接得到系统的精确状态,而需要采用某种方法来估计状态,这就是卡尔曼滤波器的应用之处卡尔曼滤波器能够在存在建模误差和测量噪声的情况下,提供准确的状态估计。

2. 电路系统建模、基尔霍夫定律

基本元件:
电量 库伦( C C C q q q
电流 安培( A A A i i i —— i = d e d t i=\frac{\mathrm{d}e}{\mathrm{d}t} i=dtde 流速
电压 伏特( V V V e e e
电阻 欧姆( Ω \varOmega Ω R R R —— e R = i R e_{\mathrm{R}}=iR eR=iR
电容 法拉( F F F C C C —— q = C e C , e C = 1 C q = 1 C ∫ 0 t i d t q=Ce_{\mathrm{C}},e_{\mathrm{C}}=\frac{1}{C}q=\frac{1}{C}\int_0^t{i}\mathrm{d}t q=CeC,eC=C1q=C10tidt
电感 亨利( H H H L L L —— e L = L d i d t = L i ′ e_{\mathrm{L}}=L\frac{\mathrm{d}i}{\mathrm{d}t}=Li^{\prime} eL=Ldtdi=Li
在这里插入图片描述

基尔霍夫定律

K(Kirchhoff) C(Current) L(Law) —— 所有进入某节点的电流的总和等于所有离开这个节点的的电流总和

K(Kirchhoff) V(Voltage) L(Law) —— 沿着闭合回路所有元件两端的电压的代数和等于零

在这里插入图片描述
在这里插入图片描述)

3. 流体系统建模

在这里插入图片描述

流量 flow rate q q q m 3 / s m^3/s m3/s
体积 volume V V V m 3 m^3 m3
高度 heigh h h h m m m
压强 pressure p p p N / m ( p a s c a l ) N/m\left( pascal \right) N/m(pascal)

静压 Hydrostatic Pressure p H y d r o = F H y d r o A = m g A = ρ g h p_{\mathrm{Hydro}}=\frac{F_{\mathrm{Hydro}}}{A}=\frac{mg}{A}=\rho gh pHydro=AFHydro=Amg=ρgh
绝对压强 Asolute Pressure p a b s = p a + p H y d r o = p a + ρ g h p_{abs}=p_{\mathrm{a}}+p_{\mathrm{Hydro}}=p_{\mathrm{a}}+\rho gh pabs=pa+pHydro=pa+ρgh
表压 Gauge Pressure P g a u g e = p a b s − p a = ρ g h P_{\mathrm{gauge}}=p_{abs}-p_{\mathrm{a}}=\rho gh Pgauge=pabspa=ρgh

流阻 Fluid Resistance
在这里插入图片描述
质量守恒 Conservation of Mass
在这里插入图片描述

4. 拉普拉斯变换(Laplace)传递函数、微分方程

研究动态系统的输入与输出之间的关系可以帮助我们了解动态系统的本质。对于线性时不变系统而言,其输入与输出之间是卷积(Convolution)关系,即系统的输人会对未来一段时间之内的系统输生影响。

拉普拉斯变换(Laplace Transform)是经典控制理论中重要的数学工具。它可以把一个时域上的可拉普拉斯变换广泛地应用于工程分析当中。 f ( t ) f(t) f(t)转换成一个复数域上的函数 F ( s ) F(s) F(s),从而简化系统分析的难度。

拉普拉斯变换:

  • 拉普拉斯变换是线性变换,符合叠加原理。
  • 卷积的拉普拉斯变换是乘法运算,这是重要的性质,它可以简化系统的分析。
  • 利用拉普拉斯逆变换可以方便地求解微分方程。

4.1 Laplace Transform 拉式变换

f ( t ) → F ( s ) f\left( t \right) \rightarrow F\left( s \right) f(t)F(s) : 时域 - 频域 s = σ + j w s=\sigma +jw s=σ+jw
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述)

在这里插入图片描述

4.2 收敛域(ROC)与逆变换(ILT)

对一个函数 f ( t ) f(t) f(t)做拉普拉斯变换,可以将其从时域 ( t ) (t) (t)转换到复数域 ( s ) (s) (s),它的定义为:

在这里插入图片描述
上式中积分下限从0开始。从控制工程的角度来讲,不需要去研究时间0点以前的事情,而是把这部分留给哲学家。考虑一个特例,当 σ = 0 σ=0 σ=0的时候,拉普拉斯变换变成
F ( s ) = F ( j w ) = ∫ 0 ∞ f ( t ) e − s t d t F\left( s \right) =F\left( jw \right) =\int_0^{\infty}{f\left( t \right) e^{-st}}\mathrm{d}t F(s)=F(jw)=0f(t)estdt
这是函数 f ( t ) f(t) f(t)的傅里叶变换。因此,傅里叶变换是拉普拉斯变换的一种特殊情况。

在求这个变换时,需要假设这个积分是收敛的。
在这里插入图片描述
微分方程——描述动态世界
状态变量 : d x ⃗ d t \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} dtdx -时间
位移: s s s , 速度: d x d t \frac{\mathrm{d}x}{\mathrm{d}t} dtdx ,加速度: d 2 x d t 2 \frac{\mathrm{d}^2x}{\mathrm{d}t^2} dt2d2x

  • F = m d 2 x d t 2 F=m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} F=mdt2d2x
  • d T d t = − k ( T − C ) \frac{\mathrm{d}T}{\mathrm{d}t}=-k\left( T-C \right) dtdT=k(TC)
  • d P d t = − r p ( 1 − p k ) \frac{\mathrm{d}P}{\mathrm{d}t}=-rp\left( 1-\frac{p}{k} \right) dtdP=rp(1kp) 人口增长

常系数线性 —— 线性时不变系统

  • 求解 3Step
    t t t s s s L [ f ( t ) ] \mathcal{L} \left[ f\left( t \right) \right] L[f(t)]
    运算求解
    s s s t t t L − 1 [ F ( s ) ] \mathcal{L} ^{-1}\left[ F\left( s \right) \right] L1[F(s)]

非线性

  • 线性化
  • 非线性分析控制
    在这里插入图片描述
    求拉普拉斯变换,就需要对变量 s s s加一个限制条件。而这个限制条件称为拉普拉斯变换的收敛域(Region of Convergence,ROC)

根据欧拉公式,复数将引入正弦(余弦)函数,带来了振动。这的根存在虚部,那么说明,当一个函数(t)经过拉普拉斯变换之后,如果 F ( s ) F(s) F(s)分母部分 f ( t ) f(t) f(t)就会存在振动。通过分析 F ( s ) F(s) F(s)的根可以了解原函数 f ( t ) f(t) f(t)的时间表现。

4.3 传递函数 Transfer Function

——根轨迹 BodePlot 信号处理

传递函数:

  • 传递函数的定义:在零初始条件下,系统输出的拉普拉斯变换与系统输入的拉普拉斯变换之间的比值。
  • 传递函数的极点:令系统的传递函数分母等于0时的 s s s值。它将决定系统的表现。
  • 非零初始状态:在时间零点赋予系统“能量”,使得系统达到初始状态。

在这里插入图片描述
在这里插入图片描述
传递函数(Transfer Function),它是经典控制理论的基础。系统的传递函数 G ( s ) G(s) G(s)的定义是:在的拉普拉斯变换与系统输入的拉普拉斯变换之间的比值,即:
G ( s ) = X ( s ) U ( s ) G\left( s \right) =\frac{X\left( s \right)}{U\left( s \right)} G(s)=U(s)X(s)
单位冲击函数 δ ( t ) \delta \left( t \right) δ(t)的拉普拉斯变换 L [ δ ( t ) ] = 1 \mathcal{L} \left[ \delta \left( t \right) \right] =1 L[δ(t)]=1,其系统响应为:
X ( s ) = L [ δ ( t ) ] G ( s ) = G ( s ) X\left( s \right) =\mathcal{L} \left[ \delta \left( t \right) \right] G\left( s \right) =G\left( s \right) X(s)=L[δ(t)]G(s)=G(s)
上式说明,当单位冲激函数作用在线性时不变系统上时,其输出(即系统的单位冲激响应)等于传递函数本身。

从另个角度验证了重要概念:单位冲激响应可以完全地定义线性时不变系统。同时,卷积运算通过拉普拉斯变换成为乘法运算这也符合所表达出来的输入与输出之间的乘积关系。

经过拉普拉斯变换后,卷积关系的系统输入与输出 x ( t ) = u ( t ) ∗ h ( t ) x(t)=u(t)*h(t) x(t)=u(t)h(t)被简化为乘积关系 X ( s ) = U ( s ) G ( s ) X(s)=U(s)G(s) X(s)=U(s)G(s),这将在很大程度上简化系统分析的复杂程度。

当系统输出 X ( s ) X(s) X(s)的分母部分等于0时,可以得到: s ( s + g R ) = 0 ⇒ { s p 1 = 0 s p 2 = − g R s\left( s+\frac{g}{R} \right) =0\Rightarrow \begin{cases} s_{\mathrm{p}1}=0\\ s_{\mathrm{p}2}=-\frac{g}{R}\\ \end{cases} s(s+Rg)=0{sp1=0sp2=Rg , s p 1 s_{\mathrm{p}1} sp1 s p 2 s_{\mathrm{p}2} sp2 被称为系统输出的极点(Poles),其中 s p 1 s_{\mathrm{p}1} sp1是输入项引入的极点, s p 2 s_{\mathrm{p}2} sp2是传递函数的极点,这是动态系统自身的极点,体现了动态系统的特性,可以直接通过传递函数的特征方程(Characteristic Equation),令 G ( s ) G(s) G(s)的分母部分为0得到。

4.4 非零初始状态下的传递函数

在这里插入图片描述
高阶系统的非零初始条件的分布比较复杂,但是其理念与一阶系统相同,系统的初始状态可以理解为瞬时间赋予系统的能量。

5. 一阶系统的单位阶跃响应(step response),时间常数(Time Constant)

5.1 引子——案发时间是几点

在这里插入图片描述

5.2 一阶系统的时域响应

在这里插入图片描述
换个角度分析单位阶跃响应(System Unit Step Response - 一阶 1st order)——LTI

一阶线性时不变 —— 1st order LTI
x ˙ + a x = a u x ( 0 ) = x ˙ ( 0 ) = 0 \dot{x}+ax=au \\ x\left( 0 \right) =\dot{x}\left( 0 \right) =0 x˙+ax=aux(0)=x˙(0)=0

传递函数 : s X ( s ) + a X ( s ) = a U ( s ) ; H ( s ) = X ( s ) U ( s ) = a s + a sX\left( s \right) +aX\left( s \right) =aU\left( s \right) ;H\left( s \right) =\frac{X\left( s \right)}{U\left( s \right)}=\frac{a}{s+a} sX(s)+aX(s)=aU(s);H(s)=U(s)X(s)=s+aa

在这里插入图片描述

  • 时间常数(Time Constant):此时 τ = 1 a \tau =\frac{1}{a} τ=a1 , x ( τ ) = 1 − e − 1 ≈ 0.63 x\left( \tau \right) =1-e^{-1}\approx 0.63 x(τ)=1e10.63这个参数数反映了系统的响应速度。 a a a越大, τ \tau τ\越小,系统的反应速度越快。
  • 调节时间或者稳定时间(Settling Time) T s = 4 τ = 4 a T_{\mathrm{s}}=4\tau =\frac{4}{a} Ts=4τ=a4 , 此时 x ( T s ) ≈ 0.98 x\left( T_{\mathrm{s}} \right) \approx 0.98 x(Ts)0.98它表示了系统输出与终值之间的差距达到2%以内时所需要的时间中,可以理解为对系统施加一个阶跃输后,系统需要 T s T_{\mathrm{s}} Ts的时间达到稳定状态。
    在这里插入图片描述

Another Viewpoint : x ˙ + a x = a u , t ⩾ 0 , u = 1 ⇒ x ˙ = a − a x = a ( 1 − x ) \dot{x}+ax=au,t\geqslant 0,u=1\Rightarrow \dot{x}=a-ax=a\left( 1-x \right) x˙+ax=au,t0,u=1x˙=aax=a(1x)
在这里插入图片描述
通过以上分析可以发现,使用传递函数和相轨迹得出的结论是一致的。其中,传递函数和拉普拉斯变换可以方便地得到一阶系统的时域响应解析式。而通过相轨迹可以直观、快速地分析一阶系统对初始条件的响应。

单位冲激函数
在这里插入图片描述
在这里插入图片描述
显示了一阶系统在不同 a a a值下的单位冲激响应。可知当单位冲激输入作用在一阶系统时,系统的输出 x ( t ) x(t) x(t)将从 a a a开始变化。从系统输出的极点角度来看,当 a > 0 a>0 a>0时, X ( s ) X(s) X(s)的极点,因此 x ( t ) x(t) x(t)将递减并收敛于0。另一方面 a ≤ 0 a≤0 a0时, X ( s ) X(s) X(s)的极点 s p = − a > 0 s_p=-a>0 sp=a>0, x ( t ) x(t) x(t)则会趋于负无穷。同一时,因为 X ( s ) X(s) X(s)是单位冲激响应,所以 X ( s ) = G ( s ) X(s)=G(s) X(s)=G(s),输出的极点也是传递函数的极点。
在这里插入图片描述
在这里插入图片描述
初始输出状态是 x 0 x_0 x0 x ( t ) x(t) x(t)随时间收敛或者发散取决于 a a a的符号,当 a > 0 a>0 a>0时,不管初始输出 x 0 x₀ x0的符号是什么,系统的输出 x ( t ) x(t) x(t)都会随时间的增加趋于 0 0 0。当 a < 0 a<0 a<0时,不同符号的初始输出,当会导致 x ( t ) x(t) x(t)随时间的增加向着正无穷或者负无穷变化。
在这里插入图片描述

5.3 案发时间揭秘

在这里插入图片描述
在这里插入图片描述

5.4 Summary

  • 一阶系统的表达形式:
    微分方程: d x ( t ) d t + a x ( t ) = a u ( t ) \frac{\mathrm{d}x\left( t \right)}{\mathrm{d}t}+ax\left( t \right) =au\left( t \right) dtdx(t)+ax(t)=au(t)
    传递函数: G ( s ) = X ( s ) U ( s ) = a s + a G\left( s \right) =\frac{X\left( s \right)}{U\left( s \right)}=\frac{a}{s+a} G(s)=U(s)X(s)=s+aa
    传递函数极点: s p = − a s_p=-a sp=a
  • 一阶系统的单位冲激响应:
    单位冲激函数: { δ ( t ) = 0 , t ≠ 0 ∫ − ∞ ∞ δ ( t ) d t = 1 \begin{cases} \delta \left( t \right) =0,t\ne 0\\ \int_{-\infty}^{\infty}{\delta \left( t \right)}\mathrm{d}t=1\\ \end{cases} {δ(t)=0,t=0δ(t)dt=1
    系统输出的拉普拉斯变换: X ( s ) = a s + a X\left( s \right) =\frac{a}{s+a} X(s)=s+aa
    冲激响应的时域表达: x ( t ) = a e − a t x\left( t \right) =ae^{-at} x(t)=aeat
    a > 0 a>0 a>0时, s p < 0 s_p<0 sp<0,系统收敛于 0 。当 a < 0 a<0 a<0时, s p > 0 s_p>0 sp>0,系统趋于负无穷
    系统对初始条件的响应即为冲激响应
  • 一阶系统的单位阶跃响应:
    单位阶跃函数: u ( t ) = { 1 , t > 0 0 , t < 0 u\left( t \right) =\begin{cases} 1,t>0\\ 0,t<0\\ \end{cases} u(t)={1,t>00,t<0
    系统输出的拉普拉斯变换: X ( s ) = a s ( s + a ) X\left( s \right) =\frac{a}{s\left( s+a \right)} X(s)=s(s+a)a
    单位阶跃响应的时域表达: x ( t ) = 1 − e − a t x\left( t \right) =1-e^{-at} x(t)=1eat
    a > 0 a>0 a>0时, s p < 0 s_p<0 sp<0,系统收敛于 1 。当 a < 0 a<0 a<0时, s p > 0 s_p>0 sp>0,系统趋于负无穷
    时间常数 τ = 1 a \tau =\frac{1}{a} τ=a1 , 此时系统输出在终值状态的63%
    调节时间 T s = 4 τ = 4 a T_{\mathrm{s}}=4\tau =\frac{4}{a} Ts=4τ=a4 , 此时系统输出达到了终值状态的98%
    使用相轨迹法可以直观明了地分析系统对于不同初始条件的响应。

6. 频率响应与滤波器

本章将讨论频率响应,它通过线性时不变系统对正弦输人的稳态响应来分析系统性能。其结论被广泛地应用在控制理论和信号处理中。本章将详细推导系统频率响应的特性,分析典型系统的频率响应并讨论其应用。本章的学习目标为:

  • 掌握线性时不变系统的频率响应推导过程和结论。
  • 掌握一阶系统与二阶系统的频率响应特性。
  • 理解伯德图的含义。
  • 掌握典型系统的伯德图。
  • 理解使用伯德图与频率响应特性设计滤波器与控制器的基本原理。

6.1 引子——百万调音师

播放器的设置中打开“均衡器”(Equalizer)这一选项,通过它可以调节音乐中不同声部的振幅。一般会有几个默认的选项,如古典、摇滚、流行、民谣等,当然也可以手动调节以满足不同播音设备的要求。横坐标部分所显示的32,64,125,…代表频率,单位是Hz;纵坐标代表强度(振幅)。通过调节均衡器,可以达到“低音沉、中音准、高音甜”的通透音响效果。
在这里插入图片描述
音乐的本质是传播媒介的振动,不同频率叠加在一起便产生了美妙的乐章。例如,鼓声会集中在低频部分(32~125Hz),人声在500~2000Hz。一些乐器、高音和清晰的对白则出现在更高的频率上。本章将从控制理论的角度人手,探讨均衡器背后的数学原理,并以此为例讲解系统的频率响应。

6.2 频率特性推导

# 1. Laplace Transform 拉式变换
传递函数 G ( s ) G(s) G(s)是输出与输入的拉普拉斯变换的比值。当 σ = j w i \sigma =jw_{\mathrm{i}} σ=jwi的时候,拉普拉斯变换变成了傅里叶变换。实信号函数的傅里叶变换属于埃尔米特函数(Hermitian Function),符合共轭对称。
在这里插入图片描述

M 0 , φ 0 M_0,\varphi _0 M0,φ0代表输出(下标 0 0 0Output)的振幅与相位。会发现在经过了上面一系列复杂的运算后得出了一个简单的结论:
当正弦输入 u ( t ) = M i sin ⁡ ( w i t + φ i ) u\left( t \right) =M_{\mathrm{i}}\sin \left( w_{\mathrm{i}}t+\varphi _{\mathrm{i}} \right) u(t)=Misin(wit+φi) 通过线性时不变系统 G ( s ) G(s) G(s) 后,输出的稳态值 x s s ( t ) x_{\mathrm{ss}}\left( t \right) xss(t)与输入保持同样的频率 w i w_{\mathrm{i}} wi,但振幅变化了 ∣ ∠ G ( j w i ) ∣ \left| \angle G\left( jw_{\mathrm{i}} \right) \right| G(jwi)倍(振幅响应),相位移动了 ∠ G ( j w i ) \angle G\left( jw_{\mathrm{i}} \right) G(jwi)(相位响应)。这是系统频率响应中最重要的结论。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

当输入 u ( t ) = M i sin ⁡ ( w i t + φ i ) u\left( t \right) =M_{\mathrm{i}}\sin \left( w_{\mathrm{i}}t+\varphi _{\mathrm{i}} \right) u(t)=Misin(wit+φi)时,系统的稳态输出为:
x s s ( t ) = 1 w i M i sin ⁡ ( w i t + φ i − π 2 ) x_{\mathrm{ss}}\left( t \right) =\frac{1}{w_{\mathrm{i}}}M_{\mathrm{i}}\sin \left( w_{\mathrm{i}}t+\varphi _{\mathrm{i}}-\frac{\pi}{2} \right) xss(t)=wi1Misin(wit+φi2π)
u ( t ) u(t) u(t)通过积分器之后振幅缩小到原来的 1 w i \frac{1}{w_{\mathrm{i}}} wi1,且输入的频率越高,输出的振幅就越小,所以从信号处理的角度来看,积分器是低通滤波器(Low Pass Filter)。其相位则有 − π 2 -\frac{\pi}{2} 2π的偏移。

6.3 一阶系统的频率响应

1st order system 一阶系统
+
在这里插入图片描述
在这里插入图片描述
低通滤波器——Loss Pass Filter

从信号处理的角度来分析, G ( s ) = a s + a G\left( s \right) =\frac{a}{s+a} G(s)=s+aa从信号处理的角是一个低通滤波器, a a a被称为截止频率(Cut-off Frequency)。当输入信号频率 w i < a w_{\mathrm{i}}<a wi<a时,振幅大部分会被保留下来;而当 w i > a w_{\mathrm{i}}>a wi>a时,振幅就会被缩小,而且 w i w_{\mathrm{i}} wi越大,输出的振幅就越小。正是因为这个性质,在实际应用中,一阶系统常常被用来降噪。一般情况下,噪声信号与信息信号相比多为高频率、小振幅的信号。

在信号处理学科中, G ( s ) = 1 s + 1 G\left( s \right) =\frac{1}{s+1} G(s)=s+11被称为一阶巴特沃思滤波器(Butterworth Filter)

在这里插入图片描述

从直观的角度来理解,这些“容器”提供了缓冲,给系统的响应带来了延迟,从而抵消了输入的高速变化带来的影响。

高通滤波器——High Pass Filter

如果一个传递函数 G ( s ) G(s) G(s),它的振幅变化为:
∣ G ( j w i ) ∣ = 1 ( a w i ) 2 + 1 \left| G\left( jw_{\mathrm{i}} \right) \right|=\sqrt{\frac{1}{\left( \frac{a}{w_{\mathrm{i}}} \right) ^2+1}} G(jwi)=(wia)2+11
使用同样的方法分析,可以得出其所对应的是一个高通滤波器(High Pass Filter)
G ( s ) = s s + a G\left( s \right) =\frac{s}{s+a} G(s)=s+as

7. 二阶系统

很多的高阶系统都可以近似为二阶系统。所以详细讨论和分析二阶系统有很重要的实际意义。本章的学习目标为:

  • 掌握二阶系统的一般形式及其参数的含义。
  • 掌握使用传递函数和状态空间方程的方法分析二阶系统的时域响应。
  • 熟悉二阶系统性能指标的含义和推导方法。
  • 理解科学评价动态系统性能的流程与方法。

7.1 二阶系统对初始条件的动态响应 Matlab/Simulink - 2nd Order Syetem Response to IC

Vibration 振动
在这里插入图片描述
从状态空间的角度思考:
在这里插入图片描述
进一步分析系统的特征值如何影响系统的表现

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
过阻尼和临界阻尼的区别在于它们的收敛速度不同,其中临界阻尼的系统收敛更快。

类4补充:
{ λ 1 = w n j λ 2 = − w n j \begin{cases} \lambda _1=w_{\mathrm{n}}j\\ \lambda _2=-w_{\mathrm{n}}j\\ \end{cases} {λ1=wnjλ2=wnj
状态矩阵的特征值是一对共轭纯虚数。平衡点 [ 0 , 0 ] [0,0] [0,0]是一个中心点。其相轨迹会围绕着这个中心点做圆周运动。此时两个状态变量,即质量块的位移与速度会不断地振动,循环往复。从物理意义上来理解它, ξ = 0 ξ=0 ξ=0代表 b = 0 b=0 b=0,即系统的阻尼为零。没有阻尼的时候系统的总能量就不会消耗,所以一旦对这个系统施加一个初始状态(给予其初始的能量),它就会不断地振动下去。这种系统称为无阻尼系统(Undamped System)

7.2 二阶系统的单位阶跃响应 2nd Order System Unit Step Response

二阶系统的一般形式——传递函数和状态空间方程

在这里插入图片描述在这里插入图片描述

Unit Step Imput 单位阶跃
在这里插入图片描述
说明 x ( t ) x(t) x(t)的收敛速度是由指数部分 − ξ w n -ξw_n ξwn决定的,它同时也是传递函数极点 s p 2 , 3 s_{p2,3} sp2,3的实数部分。周期是由 w d w_d wd决定的,而 w d w_d wd则是传递函数极点 s p 2 , 3 s_{p2,3} sp2,3的虚部。这再一次验证了传递函数极点对系统输出的影响。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

7.3 二阶系统单位阶跃的性能分析与比较 2nd Order System Unit Step Response

7.3.1 无人机——二阶系统的重要性能指标

在这里插入图片描述
在实际工程应用中,大部分关于运动控制的系统,简化后的闭环专递函数都会呈现出二阶系统的表现,即可以近似认为从直观理解,控制系统设计相当于将无人机挂在了一个“看不见”的弹簧阻尼系统上面,而控制器的设计过程就是设计这个弹簧阻尼系统的固有频率和阻尼比

在这里插入图片描述
现在假设算法工程师提供了三种方案,经过测试后无人机都可以从初始高度达到目标高度,但它们的运行轨迹不同,作为项目经理,请问你会如何评价这三种算法,又会选择哪一种呢?

7.3.2 二阶系统的指标分析

在这里插入图片描述
为i得到令人信服的评估结果,需要一些量化的指标:

  • 上升时间(Rise Time) T r T_{\mathrm{r}} Tr:系统第一次达到稳定点的时间,有点系统达不到稳定状态,就取稳定值的90%——体现系统的反应速度
    固有频率越大,上升时间越小,系统响应越快。阻尼比越大,上升时间越大
  • 最大超调量(Maximum Overshoot) M p M_{\mathrm{p}} Mp:系统输出的最大值(峰值)减去稳态值与稳态值的百分率——体现系统矫枉过正的能力/倾向
    峰值时间(Peak Time) T p T_{\mathrm{p}} Tp——最大超调量只与阻尼比有关,阻尼比越大,超调量越小。在无阻尼状态时,系统的弹性越大,即最大会超调1倍。
  • 稳定时间/调节时间(Settling Time) T s T_{\mathrm{s}} Ts:系统进入稳态的误差范围内的时间,一般是最终状态的2%——体现系统的稳定速度
    ζ w n \zeta w_{\mathrm{n}} ζwn成反比, ζ w n \zeta w_{\mathrm{n}} ζwn是传递函数系统极点的实部,将决定系统的收敛速度。
    在这里插入图片描述

下图显示了在不同阻尼比下,二阶系统的单位阶跃响应曲线。可见阻尼比是二阶系统中的一个重要参数,它决定了系统的响应速度振荡的激烈程度等。
在这里插入图片描述

7.4 共振现象-二阶系统频率响应,现象部分

在这里插入图片描述

7.5 Summary

  • 二阶系统的一般表达形式:
    微分方程: d 2 x ( t ) d t 2 + 2 ζ w n d x ( t ) d t + w n 2 x ( t ) = w n 2 u ( t ) \frac{\mathrm{d}^2x\left( t \right)}{\mathrm{d}t^2}+2\zeta w_{\mathrm{n}}\frac{\mathrm{d}x\left( t \right)}{\mathrm{d}t}+{w_{\mathrm{n}}}^2x\left( t \right) ={w_{\mathrm{n}}}^2u\left( t \right) dt2d2x(t)+2ζwndtdx(t)+wn2x(t)=wn2u(t)
    传递函数: G ( s ) = X ( s ) U ( S ) = w n 2 s 2 + 2 ζ w n s + w n 2 G\left( s \right) =\frac{X\left( s \right)}{U\left( S \right)}=\frac{{w_{\mathrm{n}}}^2}{s^2+2\zeta w_{\mathrm{n}}s+{w_{\mathrm{n}}}^2} G(s)=U(S)X(s)=s2+2ζwns+wn2wn2
    零输入状态空间方程表达: d z ( t ) d t = A z ( t ) , A = [ 0 1 − w n 2 − 2 ζ w n ] \frac{\mathrm{d}\boldsymbol{z}\left( t \right)}{\mathrm{d}t}=A\boldsymbol{z}\left( t \right) ,A=\left[ \begin{matrix} 0& 1\\ -{w_{\mathrm{n}}}^2& -2\zeta w_{\mathrm{n}}\\ \end{matrix} \right] dtdz(t)=Az(t),A=[0wn212ζwn]
  • 二阶系统对初始状态的响应:
    特征方程: λ 2 + 2 ζ w n λ + w n 2 = 0 \lambda ^2+2\zeta w_{\mathrm{n}}\lambda +{w_{\mathrm{n}}}^2=0 λ2+2ζwnλ+wn2=0
    特征方程的解: { λ 1 = − ζ w n + w n ζ 2 − 1 λ 2 = − ζ w n − w n ζ 2 − 1 \begin{cases} \lambda _1=-\zeta w_{\mathrm{n}}+w_{\mathrm{n}}\sqrt{\zeta ^2-1}\\ \lambda _2=-\zeta w_{\mathrm{n}}-w_{\mathrm{n}}\sqrt{\zeta ^2-1}\\ \end{cases} {λ1=ζwn+wnζ21 λ2=ζwnwnζ21
    可采用相轨迹的方法分情况进行讨论
  • 二阶系统的单位阶跃响应:
    系统输出的三个极点: { s p 1 = 0 s p 2 = − ζ w n + w n ζ 2 − 1 s p 3 = − ζ w n − w n ζ 2 − 1 \begin{cases} s_{\mathrm{p}1}=0\\ s_{\mathrm{p}2}=-\zeta w_{\mathrm{n}}+w_{\mathrm{n}}\sqrt{\zeta ^2-1}\\ s_{\mathrm{p}3}=-\zeta w_{\mathrm{n}}-w_{\mathrm{n}}\sqrt{\zeta ^2-1}\\ \end{cases} sp1=0sp2=ζwn+wnζ21 sp3=ζwnwnζ21 , 其中 s p 1 s_{\mathrm{p}1} sp1来自输入, s p 2 s_{\mathrm{p}2} sp2 s p 3 s_{\mathrm{p}3} sp3是传递函数的极点
    欠阻尼系统 ( 0 < ζ < 1 ) \left( 0<\zeta <1 \right) (0<ζ<1) x ( t ) = 1 − e − ζ w n t [ cos ⁡ w d t + ζ 1 − ζ 2 sin ⁡ w d t ] x\left( t \right) =1-e^{-\zeta w_{\mathrm{n}}t}\left[ \cos w_{\mathrm{d}}t+\frac{\zeta}{\sqrt{1-\zeta ^2}}\sin w_{\mathrm{d}}t \right] x(t)=1eζwnt[coswdt+1ζ2 ζsinwdt]
    无阻尼系统 ( ζ = 0 ) \left( \zeta =0 \right) (ζ=0) x ( t ) = 1 − cos ⁡ w n t x\left( t \right) =1-\cos w_{\mathrm{n}}t x(t)=1coswnt
    临界阻尼系统 ( ζ = 1 ) \left( \zeta =1 \right) (ζ=1) x ( t ) = 1 − e − w n t ( 1 + w n t ) x\left( t \right) =1-e^{-w_{\mathrm{n}}t}\left( 1+w_{\mathrm{n}}t \right) x(t)=1ewnt(1+wnt)
    过阻尼系统 ζ > 1 \zeta >1 ζ>1 x ( t ) = 1 − 1 2 ζ 2 − 1 ( ζ − ζ 2 − 1 ) e ( − ζ w n + w n ζ 2 − 1 ) t + 1 2 ζ 2 − 1 ( ζ + ζ 2 − 1 ) e ( − ζ w n − w n ζ 2 − 1 ) t x\left( t \right) =1-\frac{1}{2\sqrt{\zeta ^2-1}\left( \zeta -\sqrt{\zeta ^2-1} \right)}e^{\left( -\zeta w_{\mathrm{n}}+w_{\mathrm{n}}\sqrt{\zeta ^2-1} \right) t}+\frac{1}{2\sqrt{\zeta ^2-1}\left( \zeta +\sqrt{\zeta ^2-1} \right)}e^{\left( -\zeta w_{\mathrm{n}}-w_{\mathrm{n}}\sqrt{\zeta ^2-1} \right) t} x(t)=12ζ21 (ζζ21 )1e(ζwn+wnζ21 )t+2ζ21 (ζ+ζ21 )1e(ζwnwnζ21 )t
  • 二阶系统性能指标:
    上升时间:系统第一次达到稳定点的时间,体现系统的反应速度
    最大超调量:系统输出的最大值(峰值)减去稳态值与稳态值之比,再乘以100%
    稳定时间:系统进入稳态的误差范围内的时间,一般就是最终状态的2%以内

8. 二阶系统的频率响应

在这里插入图片描述
同时可以发现,当阻尼比 ζ ζ ζ很小的时候,共振频率约等于系统的固有频率
在这里插入图片描述

9. 伯德图

最为广泛应用的频率响应绘图方法——伯德图(Bode Plot)。它是对数频率特性曲线,是以发明人荷兰裔美国工程师Hendrik Wade Bode命名的。

9.1 伯德图的含义与性质

伯德图由上下两部分组成:上半部分是输出的振幅响应 ∣ G ( j w i ) ∣ \left| G\left( jw_{\mathrm{i}} \right) \right| G(jwi)随输入频率 w i w_{\mathrm{i}} wi的变化,称为幅频图(Magnitude Plot),下半部分是输出的相位响应 ∠ G ( j w i ) \angle G\left( jw_{\mathrm{i}} \right) G(jwi)随输输入频率 w i w_{\mathrm{i}} wi的变化,称为相频图(Phase Plot)
在这里插入图片描述

  • 幅频图
    其纵轴坐标是 20 log ⁡ ∣ G ( j w i ) ∣ 20\log \left| G\left( jw_{\mathrm{i}} \right) \right| 20logG(jwi),单位是 d B dB dB,即分贝(Decibel)。分贝最开始出现时被用来描述电话线路信号的丢失。Decibel这个单词中的“deci”代表1/10,“bel”指的是Alexander Bell——那位拥有电话专利的科学家。

分贝体现的是能量比值的概念,其定义为:
L d B = 10 log ⁡ P m P r L_{\mathrm{dB}}=10\log \frac{P_{\mathrm{m}}}{P_{\mathrm{r}}} LdB=10logPrPm
其中, l o g log log是以10为底的对数运算, P n P_n Pn测量功率(Measurement Power), P r P_r Pr参考功率(Reference Power) L d B L_{dB} LdB代表测量功率与参考功率的比值取对数再乘以10,单位是 d B dB dB

幅频图的纵轴是 20 log ⁡ ∣ G ( j w i ) ∣ 20\log \left| G\left( jw_{\mathrm{i}} \right) \right| 20logG(jwi),而分贝的定义是 10 log ⁡ P m P r 10\log \frac{P_{\mathrm{m}}}{P_{\mathrm{r}}} 10logPrPm,是因为在频率响应中分析的是输出振幅 M 0 M_0 M0与输入振幅 M i M_i Mi之间的比值考虑的是功率之间的比值,而功率与振幅的平方成比例。因此使用振幅比时:
L d B = 10 log ⁡ P m P r = 10 log ⁡ ( M o M i ) 2 = 20 log ⁡ M o M i = 20 log ⁡ ∣ G ( j w i ) ∣ L_{\mathrm{dB}}=10\log \frac{P_{\mathrm{m}}}{P_{\mathrm{r}}}=10\log \left( \frac{M_{\mathrm{o}}}{M_{\mathrm{i}}} \right) ^2=20\log \frac{M_{\mathrm{o}}}{M_{\mathrm{i}}}=20\log \left| G\left( jw_{\mathrm{i}} \right) \right| LdB=10logPrPm=10log(MiMo)2=20logMiMo=20logG(jwi)

9.2 典型系统的频率响应

在这里插入图片描述
Bode Plot 手绘技巧与应用
在这里插入图片描述

  • 从能量的角度分析,当使用PD控制器的时候需要额外的能量来源。同时,PD控制器对高频噪声会非常敏感(放大高频噪声),这就解释了PD控制器的两个缺陷

在这里插入图片描述

  • 超前补偿器与比例微分系统不同,它并不会无限地放大高频信号,这是因为极点的加入平滑了高频部分的幅频曲线,同时它需要额外的能量来源。另外,通过其相频图中可知相位响应为正,因此命名为超前补偿
    在这里插入图片描述
  • 滞后补偿器——与积分器不同,它平滑了低频部分的幅频曲线,因此不需要额外的能量来源。

在这里插入图片描述
掌握典型系统的频率响应有助我们理解控制器的特性。其中,积分器和滞后补偿器的相位响应都滞后于输入,正因为如此,使用这两种控制器会关注“过去”时的积累,因此有助于消除系统的稳态误差。而PD控制器和超前补偿器则相反,它们的相位响应都要比输入提前,使用这两种控制器会提前做出预测,提高系统的响应速度。

在这里插入图片描述

9.3 调音台的设计

在这里插入图片描述

9.4 Summary

  • 线性时不变系统的频率响应:
    当一个正弦信号通过线性时不变系统后,在稳定状态下,系统的输出和输入的信号频率相同,但振幅和相位发生了变化。
    稳态输出为 x s s ( t ) = M 0 sin ⁡ ( w i t + φ o ) x_{\mathrm{ss}}\left( t \right) =M_0\sin \left( w_{\mathrm{i}}t+\varphi _{\mathrm{o}} \right) xss(t)=M0sin(wit+φo),其中: M o M i = ∣ G ( j w i ) ∣ , φ o = ∠ G ( j w i ) + φ i \frac{M_{\mathrm{o}}}{M_{\mathrm{i}}}=\left| G\left( jw_{\mathrm{i}} \right) \right|,\varphi _{\mathrm{o}}=\angle G\left( jw_{\mathrm{i}} \right) +\varphi _{\mathrm{i}} MiMo=G(jwi),φo=G(jwi)+φi
    研究线性时不变系统的频率响应需要从 G ( j w i ) G\left( jw_{\mathrm{i}} \right) G(jwi)手,寻找它的振幅响应 ∣ G ( j w i ) ∣ \left| G\left( jw_{\mathrm{i}} \right) \right| G(jwi)与相位响应 ∠ G ( j w i ) \angle G\left( jw_{\mathrm{i}} \right) G(jwi)
  • 一阶系统的频率响应:
    一阶系统从信号处理的角度看是一个低通滤波器,输入频率越高,输出振幅越小,反之亦然。
    一阶系统可以用来消除高频信号噪声。
    一阶系统含有“容器”(积分)性质,系统输出对输入有延迟响应。
  • 二阶系统的频率响应:
    二阶系统的阻尼比会影响系统的频率响应,阻尼比越大,频率响应越迟缓。
    当输入频率接近系统固有频率的时候,会产生共振现象,输出的振幅会被增强。
  • 伯德图:
    伯德图是一种对数频率特性曲线,具有良好的性质。
    一个复杂系统可以拆解为个子系统进行分析,并将频率响应的结果叠加。
    使用伯德图可以设计滤波器。
  • 24
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LiongLoure

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值