[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-3(2) 刚体的位形 Configuration of Rigid Body

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。

2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
.

食用方法
如何表达刚体在空间中的位置与姿态
姿态参数如何表达?不同表达方式直接的转换关系?
旋转矩阵?转换矩阵?有什么意义和性质?转置代表什么?
如何表示连续变换?——与RPY有关
齐次坐标的意义——简化公式?
务必自己推导全部公式,并理解每个符号的含义


3.4 欧拉四元数变换

同样基于罗德里格旋转公式,定义四个欧拉参数为:
q ⃗ = [ s v ⃗ ] = [ cos ⁡ θ 2 → s c a l e    p a r t v ⃗ sin ⁡ θ 2 → v e c t o r    p a r t ] = [ cos ⁡ θ 2 v 1 sin ⁡ θ 2 v 2 sin ⁡ θ 2 v 3 sin ⁡ θ 2 ] = [ q 1 q 2 q 3 q 4 ] \vec{q}=\left[ \begin{array}{c} s\\ \vec{v}\\ \end{array} \right] =\left[ \begin{matrix} \cos \frac{\theta}{2}& \rightarrow scale\,\,part\\ \vec{v}\sin \frac{\theta}{2}& \rightarrow vector\,\,part\\ \end{matrix} \right] =\left[ \begin{array}{c} \cos \frac{\theta}{2}\\ v_1\sin \frac{\theta}{2}\\ v_2\sin \frac{\theta}{2}\\ v_3\sin \frac{\theta}{2}\\ \end{array} \right] =\left[ \begin{array}{c} q_1\\ q_2\\ q_3\\ q_4\\ \end{array} \right] q =[sv ]=[cos2θv sin2θscalepartvectorpart]= cos2θv1sin2θv2sin2θv3sin2θ = q1q2q3q4

3.4.1 四元数的数学性质

  1. 归一性 : q ⃗ T q ⃗ = ∑ i = 1 n q i 2 = 1 \vec{q}^{\mathrm{T}}\vec{q}=\sum_{i=1}^n{ {q_{\mathrm{i}}}^2}=1 q Tq =i=1nqi2=1
  2. 四元数的正交性(逆) : q ⃗ T q ⃗ = 1 ⇒ q ⃗ T = q ⃗ − 1 \vec{q}^{\mathrm{T}}\vec{q}=1\Rightarrow \vec{q}^{\mathrm{T}}=\vec{q}^{-1} q Tq =1q T=q 1
  3. 四元数的转置(共轭)——旋转轴不变,旋转角相反 : q ⃗ T = q ⃗ − 1 = [ cos ⁡ ( − θ 2 ) v 1 sin ⁡ ( − θ 2 ) v 2 sin ⁡ ( − θ 2 ) v 3 sin ⁡ ( − θ 2 ) ] = [ cos ⁡ θ 2 − v 1 sin ⁡ θ 2 − v 2 sin ⁡ θ 2 − v 3 sin ⁡ θ 2 ] = [ s − v ⃗ ] \vec{q}^{\mathrm{T}}=\vec{q}^{-1}=\left[ \begin{array}{c} \cos \left( \frac{-\theta}{2} \right)\\ v_1\sin \left( \frac{-\theta}{2} \right)\\ v_2\sin \left( \frac{-\theta}{2} \right)\\ v_3\sin \left( \frac{-\theta}{2} \right)\\ \end{array} \right] =\left[ \begin{array}{c} \cos \frac{\theta}{2}\\ -v_1\sin \frac{\theta}{2}\\ -v_2\sin \frac{\theta}{2}\\ -v_3\sin \frac{\theta}{2}\\ \end{array} \right] =\left[ \begin{array}{c} s\\ -\vec{v}\\ \end{array} \right] q T=q 1= cos(2θ)v1sin(2θ)v2sin(2θ)v3sin(2θ) = cos2θv1sin2θv2sin2θv3sin2θ =[sv ]
  4. 四元数的乘法 : q ⃗ 1 ⋅ q ⃗ 2 = [ s 1 v ⃗ 1 ] ⋅ [ s 2 v ⃗ 2 ] = [ s 1 s 2 − v ⃗ 1 T v ⃗ 2 s 1 v ⃗ 2 + s 2 v ⃗ 1 + v ⃗ 1 × v ⃗ 2 ] = [ s 1 − v ⃗ 1 T v ⃗ 1 s 1 E + v ⃗ ~ 1 ] ⏟ L ( q 1 ) [ s 2 v ⃗ 2 ] = [ s 2 − v ⃗ 2 T v ⃗ 2 s 2 E − v ⃗ ~ 2 ] ⏟ R ( q 2 ) [ s 1 v ⃗ 1 ] \begin{split} \vec{q}_1\cdot \vec{q}_2&=\left[ \begin{array}{c} s_1\\ \vec{v}_1\\ \end{array} \right] \cdot \left[ \begin{array}{c} s_2\\ \vec{v}_2\\ \end{array} \right] =\left[ \begin{array}{c} s_1s_2-{\vec{v}_1}^{\mathrm{T}}\vec{v}_2\\ s_1\vec{v}_2+s_2\vec{v}_1+\vec{v}_1\times \vec{v}_2\\ \end{array} \right] \\ &=\begin{array}{c} \underbrace{\left[ \begin{matrix} s_1& -{\vec{v}_1}^{\mathrm{T}}\\ \vec{v}_1& s_1E+\tilde{\vec{v}}_1\\ \end{matrix} \right] }\\ L\left( q_1 \right)\\ \end{array}\left[ \begin{array}{c} s_2\\ \vec{v}_2\\ \end{array} \right] =\begin{array}{c} \underbrace{\left[ \begin{matrix} s_2& -{\vec{v}_2}^{\mathrm{T}}\\ \vec{v}_2& s_2E-\tilde{\vec{v}}_2\\ \end{matrix} \right] }\\ R\left( q_2 \right)\\ \end{array}\left[ \begin{array}{c} s_1\\ \vec{v}_1\\ \end{array} \right] \end{split} q 1q 2=[s1v 1][s2v 2]=[s1s2v 1Tv 2s1v 2+s2v 1+v 1×v 2]= [s1v 1v 1Ts1E+v ~1]L(q1)[s2v 2]= [s2v 2v 2Ts2Ev ~2]R(q2)[s1v 1]
    其中: L ( q 1 T ) = L ( q 1 ) T L\left( {q_1}^{\mathrm{T}} \right) =L\left( q_1 \right) ^{\mathrm{T}} L(q1T)=L(q1)T R ( q 1 T ) = R ( q 1 ) T R\left( {q_1}^{\mathrm{T}} \right) =R\left( q_1 \right) ^{\mathrm{T}} R(q1T)=R(q1)T
  5. 四元数的同一性 :
    θ = 0 \theta =0 θ=0时: q ⃗ ∣ θ = 0 = [ 1 0 ⃗ ] \left. \vec{q} \right|_{\theta =0}=\left[ \begin{array}{c} 1\\ \vec{0}\\ \end{array} \right] q θ=0=[10 ]

根据上述定义,可将轴角变换的旋转矩阵 [ Q ] \left[ Q \right] [Q] 改写为:
[ Q ] = [ 1 − 2 q 3 2 − 2 q 4 2 2 ( q 2 q 3 − q 1 q 4 ) 2 ( q 2 q 4 + q 1 q 3 ) 2 ( q 2 q 3 + q 1 q 4 ) 1 − 2 q 2 2 − 2 q 4 2 2 ( q 3 q 4 − q 1 q 2 ) 2 ( q 2 q 4 − q 1 q 3 ) 2 ( q 3 q 4 + q 1 q 2 ) 1 − 2 q 2 2 − 2 q 3 2 ] = [ 2 q 1 2 + 2 q 2 2 − 1 2 ( q 2 q 3 − q 1 q 4 ) 2 ( q 2 q 4 + q 1 q 3 ) 2 ( q 2 q 3 + q 1 q 4 ) 2 q 1 2 + 2 q 3 2 − 1 2 ( q 3 q 4

  • 14
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 在刚体运动学中,我们需要了解以下几个基本概念: 1. 刚体刚体是指其各点之间的距离保持不变的物体,即不会发生形变的物体。 2. 运动:刚体的位置、速度和加速度随时间的变化。 3. 位移:刚体在某一时间段内从一个位置到另一个位置的变化量。 4. 速度:刚体在某一时间点的瞬时速度,即单位时间内位移的变化量。 5. 加速度:刚体在某一时间点的瞬时加速度,即单位时间内速度的变化量。 根据以上概念,我们可以得到刚体运动学公式: 1. 位移公式: Δr = r2 - r1 其中,Δr表示位移量,r1和r2分别表示起始位置和终止位置。 2. 速度公式: v = Δr / Δt 其中,v表示瞬时速度,Δr表示位移量,Δt表示时间变化量。 3. 加速度公式: a = Δv / Δt 其中,a表示瞬时加速度,Δv表示速度变化量,Δt表示时间变化量。 4. 相对速度公式: vA/B = vA - vB 其中,vA/B表示物体A相对于物体B的速度,vA表示物体A的速度,vB表示物体B的速度。 5. 相对加速度公式: aA/B = aA - aB 其中,aA/B表示物体A相对于物体B的加速度,aA表示物体A的加速度,aB表示物体B的加速度。 这些公式可以帮助我们计算刚体的运动轨迹、速度和加速度等参数,有助于我们更好地了解和预测刚体的运动行为。 ### 回答2: 刚体运动学公式是一种用来描述刚体运动的数学公式。刚体是指物体内部各个部分相对位置保持不变的物体。其运动学主要研究刚体在不受外力作用下的运动状态和运动规律。 刚体运动学公式包括刚体的位移、速度和加速度的公式。先来看刚体的位移公式。对于平面运动的刚体,其位移可以通过求解刚体各个部分的位移向量之和得到。其中,刚体的位移向量是由某一点到另一点的直线段。对于三维空间中的刚体运动,可以将刚体的位移视为它的几何中心位置向量的变化。 刚体的速度公式可以通过求解刚体各个部分的速度向量之和得到。速度是位移在单位时间内的变化率,因此刚体的速度向量可以通过求解刚体各个部分的速度向量的和得到。 加速度是速度在单位时间内的变化率,因此刚体的加速度公式可以通过求解刚体各个部分的加速度向量之和得到。对于角速度和角加速度的计算,可以通过刚体的转动轴和转动惯量来进行计算。 刚体运动学公式的应用范围广泛,可以用于研究刚体在机械结构和工程力学中的运动规律,如机械运动传动系统、机械臂的控制和操纵等。同时,刚体运动学公式也是理解和研究刚体运动的基本工具,为解决刚体运动学动力学问题提供了数学工具和方法。 ### 回答3: 刚体运动学是物体运动学的一个重要分支,研究的是刚体在运动过程中的几何关系和运动规律。刚体在运动过程中保持形状不变,其质点之间的相对位置保持不变,因此刚体的运动可以由质点的运动来描述。 在刚体运动学中,我们可以利用一些公式来描述刚体的运动规律。常用的刚体运动学公式主要有以下几个: 1. 位移公式:刚体的位移可以用刚体上某一点的位移来表示。位移公式为Δr = Δr0 + Δx,其中Δr为刚体上某一点相对于参考点的位移,Δr0为参考点相对于参考坐标系原点的位移,Δx为质点相对于参考点的位移。 2. 速度公式:刚体的速度可以用刚体上某一点的速度来表示。速度公式为v = v0 + ω × r,其中v为刚体上某一点的速度,v0为参考点的速度,ω为刚体的角速度,r为该点相对于参考点的位矢。 3. 加速度公式:刚体的加速度可以用刚体上某一点的加速度来表示。加速度公式为a = a0 + α × r + ω × (ω × r),其中a为刚体上某一点的加速度,a0为参考点的加速度,α为刚体的角加速度。 4. 相对速度公式:当刚体上有两个质点,其相对速度可通过刚体的角速度和两点之间的相对位矢来表示。 以上是刚体运动学的一些常用公式。通过这些公式,我们可以分析刚体的运动规律,解决刚体运动中涉及的一些问题。在实际应用中,我们可以利用这些公式来计算刚体的速度、加速度等参数,从而更好地理解刚体的运动特性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LiongLoure

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值