1 一元函数求极值
一元函数的极值通过导数判定,(前提是要有导数)。首先求解驻点,令一阶导数等于0:
其次,用求解出来的点判断驻点是否为极值点,即将求解出的驻点代入二阶导数判断是否等于0:
二阶导数不为0即可筛选出极值点,继而判断极大值点极小值点:
如果,函数
取得极小值点,反之取得极大值点。
2 多元函数求极值
多元函数通过微分求解极值需要用到Hession矩阵,首先介绍Hession再介绍极值点求解方法。
2.1Hession矩阵
Hession是二阶偏导数矩阵,是对称方阵,具体形式如下:(以函数为例)
其性质为,令
如果H正定,则二次型;矩阵A负定二次型
。
2.2多元函数极值
多元函数的求解过程通过一元函数扩展得到。
首先令一阶导数等于0,求解出驻点;在判断Hession矩阵H,如果矩阵H正定,为极小值点;矩阵H负定,为极大值点。