ICLR2024论文研读:《IMAGE CLUSTERING VIA THE PRINCIPLE OF RATE REDUCTION IN THE AGE OF PRE-TRAINED MODELS》

        今天分享另一篇利用CLIP预训练模型进行聚类的论文,首先对于这个题目的THE PRINCIPLE OF RATE REDUCTION我是比较困惑的,我之前并没有接触过,但没关系,原文中会解释,文章中提到用the principle of Maximal Coding Rate Reduction(\mathrm{MCR^2})来学习特征表示,这个原则叫做最大编码率衰减原则,详见出处[1]。 如果有对预训练模型感兴趣的,也可以看看我分享的上一篇来自CVPR的论文,指路[2]: CVPR 2024 论文研读 《MoDE: CLIP Data Experts via Clustering》-CSDN博客。

方法

        模型的整体框架如下:

图1:框架

左:在训练阶段,CPP从一个大的预训练模型中初始化特征\mathcal{Z}和聚类隶属度\Pi,并通过优化( MLC )目标更新\mathcal{Z}\Pi。中间:一旦训练完成,CPP通过编码长度L ( · )准则选择最佳聚类数。右:CPP通过计算候选文本和图像之间的余弦相似度,并对最合适的标签进行投票,为每个类分配语义标签。

回顾MLC

最大编码率衰减原则

        原文首先回顾了MLC(Ding et al., 2023),MLC考虑利用最大编码率衰减原则(\mathrm{MCR^2})学习一个表示,并给出了如下定义:

其中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Little_Dream_etc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值