机器学习顶会ICLR 2024录用论文合集,包含时间序列、图大模型、agent等热门主题

ICLR2024会议公布,7262篇论文中31%被接受,聚焦于时间序列分析、图大模型和agent等主题。文章介绍了多项高分论文,如固有可解释的MILLET、ModernTCN、iTransformer等,以及语言模型在理解和合作方面的研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

朋友们,ICLR 2024这周放榜了!据统计,本届会议共收到了7262篇论文,整体接收率约为31%,与去年(31.8%)基本持平。其中Spotlight论文比例为5%,Oral论文比例为1.2%。

不知道各位看完有什么感想,我只觉卷上加卷,仿佛误入神仙打架现场...听说还有热度非常高的论文被拒稿,这下对31%接收率下的神文都讲的啥更好奇了。

于是为了满足各(自)位(已)的好奇心,我火速浏览了部分录用论文,整理出了25篇已录用的高分论文来和同学们分享,这些论文主要涉及时间序列、图大模型、agent等热门投稿主题。

由于个人时间和精力有限,论文都只做了简单介绍,但原文以及开源代码都已经帮同学们打包好了,感兴趣的同学可以看文末直接获取。

时间序列

1.Inherently Interpretable Time Series Classification via Multiple Instance Learning

通过多实例学习实现固有可解释的时间序列分类

「简述:」论文提出了一种名为MILLET的新方法,通过多实例学习来解决传统时间序列分类方法难以解释的问题。作者将MILLET应用于现有的深度学习TSC模型,并展示了它们如何在不牺牲预测性能的情况下变得更容易理解。作者在多个数据集上评估了MILLET,结果表明它比其他可解释性方法更好。

2.ModernTCN: A Modern Pure Convolution Structure for General Time Series Analysis

用于通用时间序列分析的现代纯卷积结构

「简述:」论文提出了一种名为ModernTCN的新型纯卷积结构,用于更好地进行时间序列分析。作者对传统的TCN进行了修改,使其更适合时间序列任务。ModernTCN在五个主流时间序列分析任务上表现出色,同时保持了卷积模型的效率优势,比现有的最先进Transformer-based和MLP-based模型具有更好的效率和性能平衡。研究表明,ModernTCN具有更大的有效感受野,可以更好地发挥卷积在时间序列分析中的潜力。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值