整除的相关概念
设a、b是两个整数,且b != 0,若存在一个整数q,使得a = q * b成立,则称b整除a 或 a被b整除(个人觉得有点容易搞混概念,做个强调),记作b|a,把b叫做a的因数,把a叫做b的倍数,同时q也为a的因数。
相关性质
设a、b、c是三个整数,均不为0
传递性:若c|b,且b|a,则c|a,即存在整数q使得a = q * c也成立
加法运算:若c|b,c|a,则c|(ab),即存在整数q使得(ab) = q * c也成立
线性组合:若c|b,c|a,则存在整数x、y使得c|(x*a+y*b),即存在整数q使得(x*a+y*b) = q * c也成立
相等性:若a|b,且b|a,则a=b
同余方程
概念:给定整数m,若用m去整除整数a、b得到的余数r相同(r<m),则称a和b对模m同余,记作
a ≡ b mod m,当且仅当m|(a-b)
证明:由题a = q1 * m + r,b = q2 * m + r ,相减得a - b = (q1-q2) * m,记整数q = q1 - q2,即m|(a-b)
相关性质
自反性:a ≡ a mod n
对称性:若a ≡ b mod n,则有b ≡ a mod n
传递性:若c ≡ a mod n,且a ≡ b mod n,则有c ≡ b mod n
其它:
若a ≡ b mod n,c ≡ d mod n,则有
1、a b ≡ b c mod n
2、ac ≡ bd mod n
3、a*c ≡ b*d mod n
4、 ≡
(以上的’≡‘为同余符号)