同余方程(记录)

整除的相关概念

设a、b是两个整数,且b != 0,若存在一个整数q,使得a = q * b成立,则称b整除aa被b整除(个人觉得有点容易搞混概念,做个强调),记作b|a,把b叫做a的因数,把a叫做b的倍数,同时q也为a的因数。

相关性质

设a、b、c是三个整数,均不为0

传递性:若c|b,且b|a,则c|a,即存在整数q使得a = q * c也成立

加法运算:若c|b,c|a,则c|(a\pmb),即存在整数q使得(a\pmb) = q * c也成立

线性组合:若c|b,c|a,则存在整数x、y使得c|(x*a+y*b),即存在整数q使得(x*a+y*b) = q * c也成立

相等性:若a|b,且b|a,则a=\pmb

同余方程

概念:给定整数m,若用m去整除整数a、b得到的余数r相同(r<m),则称a和b对模m同余,记作

a ≡ b mod m,当且仅当m|(a-b)

证明:由题a = q1 * m + r,b = q2 * m + r ,相减得a - b = (q1-q2) * m,记整数q = q1 - q2,即m|(a-b)

相关性质

自反性:a ≡ a mod n

对称性:若a ≡ b mod n,则有b ≡ a mod n

传递性:若c ≡ a mod n,且a ≡ b mod n,则有c ≡ b mod n

其它:

若a ≡ b mod n,c ≡ d mod n,则有

1、a \pm b ≡ b \pm c mod n

2、a\pmc ≡ b\pmd mod n

3、a*c ≡ b*d mod n

4、a^{n} ≡ b^{n}

(以上的’≡‘为同余符号)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值