Python实现LSTM耦合MHA(多头注意力机制)的时间序列预测并使用Hyperopt对超参数自动率定

        在时间预测这一预测任务中,时间序列通常具有复杂的时序相关性和非线性特征。然而,传统的深度学习或者机器学习模型对时间序列内部不同位置的相互关联性建模能力较弱,这将在一定程度上降低预测结果的精度。此外,传统的深度学习或者机器学习模型大多依赖前一时间步的隐藏状态,难以实现并行计算,整体模型的训练效率较低。Multi-head Attention (MHA)是一种同时操作多种注意机制的结构,允许开展并行计算处理,同时能够从时间序列数据不同子空间中提取和学习数据特征。将MHA机制与深度学习或机器学习进行耦合,将可以捕捉时间序列数据不同时段位置的依赖关系,从而更准确、更高效地开展预测,同时增强模型的鲁棒性和泛化能力。

        将LSTM与MHA耦合,并使用Hyperopt对整体参数自动率定。得到的预测结果更加精确、快速。预测效果如下:

代码实现见:Python实现LSTM耦合MHA(多头注意力机制)的时间序列预测并使用Hyperopt对超参数自动率定

以下是基于LSTM模型的多头注意力机制时间序列预测代码。需要使用Keras和Tensorflow库。 ```python from keras.layers import Input, Dense, LSTM, concatenate from keras.models import Model from keras.callbacks import EarlyStopping import numpy as np # 构建输入层 inputs = Input(shape=(timesteps, features)) # 构建LSTMlstm = LSTM(units=64, return_sequences=True)(inputs) # 构建多头注意力机制 attn_weights = [] for _ in range(num_heads): dense = Dense(units=32, activation='relu')(lstm) attention = Dense(units=timesteps, activation='softmax')(dense) attn_weights.append(attention) attn = concatenate(attn_weights, axis=2) # 构建加权LSTM层 weighted_lstm = LSTM(units=32, return_sequences=True)(attn) # 构建输出层 outputs = Dense(units=1)(weighted_lstm) # 构建模型 model = Model(inputs=inputs, outputs=outputs) # 编译模型 model.compile(optimizer='adam', loss='mse') # 定义早期停止回调函数 early_stop = EarlyStopping(monitor='val_loss', patience=5) # 训练模型 model.fit(x_train, y_train, epochs=100, batch_size=32, validation_split=0.2, callbacks=[early_stop]) # 预测 y_pred = model.predict(x_test) ``` 其中,`timesteps`表示时间步长,`features`表示每个时间步长的特征数,`num_heads`表示多头注意力机制的头数,`x_train`和`y_train`表示训练数据,`x_test`表示测试数据。模型的输入为一个形状为`(batch_size, timesteps, features)`的张量,输出为一个形状为`(batch_size, 1)`的张量。在训练模型时,使用早期停止回调函数来避免过拟合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值