Anaconda 是一种Python语言的免费增值开源发行版,用于进行大规模数据处理, 预测分析, 和科学计算, 致力于简化包的管理和部署。 Anaconda使用软件包管理系统Conda进行包管理。[1]
1. 在实验室机子上利用Anaconda3创建了一个个人使用的环境:
conda create --name [name] [dependent package list]
conda create --name apple python=3.6
创建一个名为apple的环境,并指定Python版本为3.6.x的最新版本
2. 激活环境,列出当前环境
source activate apple #
conda info --envs
3. 在环境中安装包
conda install numpy=1.14.3
conda install -c conda-forge numpy
conda install matplotlib=2.2.2
安装pycuda,用于GPU加速
conda install -c lukepfister pycuda
4. 安装opencv-python
conda install --channel https://conda.anaconda.org/menpo opencv3
或者安装Anaconda里的
conda install -c menpo opencv3
或3.4.1
conda install -c conda-forge opencv
5. OpenCV的GPU加速
conda install -c lukepfister pycuda
6. 失效环境
source deactivate
7. 删除指定环境
conda remove --name apple --all
8. TensorFlow (参考:使用 Anaconda 进行安装)
Python3.6 支持GPU,注意有支持CPU 和GPU 的 ,不同版本到上方参考处自行查找
pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.6.0-cp36-cp36m-linux_x86_64.whl
9. 实时查看GPU运行情况
watch -n1 nvidia-smi
实时查看CPU运行情况
htop
10. Anaconda 环境备份
备份原有的AAA环境,并命名为new
conda create -n new --clone AAA
Updating
11. Jupyter添加内核
在远程使用jupyter的时候,有时候会出现无法切换内核的情况;解决情况如下:
首先进入相应的虚拟环境,然后安装ipykernel
pip install ipykernel
将虚拟环境加入kernel
(det3d)> python -m ipykernel install --user --name=det3d
Reference:
[1] Anaconda (Python发行版). (2018, February 28). Retrieved from 维基百科, 自由的百科全书: https://zh.wikipedia.org/w/index.php?title=Anaconda_(Python%E5%8F%91%E8%A1%8C%E7%89%88)&oldid=48477933