Trusting Your Evidence: Hallucinate Less with Context-aware Decoding----相信你的证据:通过上下文感知解码减少幻觉

本文提出上下文感知解码(CAD),一种方法,通过对比上下文和无上下文的输出概率,促使语言模型关注输入上下文,从而减少生成文本中的幻觉。实验显示CAD显著提高了不同LM的忠实度,并在处理知识冲突任务时效果尤为明显。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Trusting Your Evidence: Hallucinate Less with Context-aware Decoding Weijia Shi 1 ∗ Xiaochuang Han 1 ∗ Mike Lewis 2 Yulia Tsvetkov 1 Luke Zettlemoyer 1 Scott Yih 2 1 University of Washington, Seattle, WA, 2 Meta AI {swj0419, xhan77}@cs.washington.edu
----
相信你的证据:通过上下文感知解码减少幻觉 Weijia Shi 1 * Xiaochuang Han 1 * Mike Lewis 2 Yulia Tsvetkov 1 Luke Zettlemoyer 1 Scott Yih 2 1 华盛顿大学,西雅图,华盛顿州,2 Meta AI

摘要

语言模型 (LM) 通常很难对输入上下文给予足够的关注,并生成不忠实或包含幻觉的文本。为了缓解这个问题,我们提出了上下文感知解码(CAD),它遵循对比输出分布,放大了在有上下文和没有上下文的情况下使用模型时输出概率之间的差异。我们的实验表明,在没有额外训练的情况下,CAD 可以显着提高不同 LM 系列的忠实度,包括用于摘要任务的 OPT、GPT、LLaMA 和 FLAN-T5(例如,LLaMA 在事实性指标中提高了 14.3%)。此外,当模型的先验知识与所提供的上下文相矛盾时,CAD 在覆盖模型的先验知识方面特别有效,从而显着改进必须解决知识冲突的任务。

1 简介

语言模型 (LM) 在生成连贯且流畅的提示或文档前缀延续方面非常有效。在生成过程中,它们主要依赖于两个知识来源:(1)先验知识,在预训练期间学习并隐式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值