Trusting Your Evidence: Hallucinate Less with Context-aware Decoding Weijia Shi 1 ∗ Xiaochuang Han 1 ∗ Mike Lewis 2 Yulia Tsvetkov 1 Luke Zettlemoyer 1 Scott Yih 2 1 University of Washington, Seattle, WA, 2 Meta AI {swj0419, xhan77}@cs.washington.edu
----
相信你的证据:通过上下文感知解码减少幻觉 Weijia Shi 1 * Xiaochuang Han 1 * Mike Lewis 2 Yulia Tsvetkov 1 Luke Zettlemoyer 1 Scott Yih 2 1 华盛顿大学,西雅图,华盛顿州,2 Meta AI
摘要
语言模型 (LM) 通常很难对输入上下文给予足够的关注,并生成不忠实或包含幻觉的文本。为了缓解这个问题,我们提出了上下文感知解码(CAD),它遵循对比输出分布,放大了在有上下文和没有上下文的情况下使用模型时输出概率之间的差异。我们的实验表明,在没有额外训练的情况下,CAD 可以显着提高不同 LM 系列的忠实度,包括用于摘要任务的 OPT、GPT、LLaMA 和 FLAN-T5(例如,LLaMA 在事实性指标中提高了 14.3%)。此外,当模型的先验知识与所提供的上下文相矛盾时,CAD 在覆盖模型的先验知识方面特别有效,从而显着改进必须解决知识冲突的任务。
1 简介
语言模型 (LM) 在生成连贯且流畅的提示或文档前缀延续方面非常有效。在生成过程中,它们主要依赖于两个知识来源:(1)先验知识,在预训练期间学习并隐式