【信号调制】 BPSK和OOK以及AWGN信道二进制正交的BER性能评估Matlab实现

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 本文对二进制相移键控(BPSK)、开关键控(OOK)两种数字调制技术在加性高斯白噪声(AWGN)信道下的误码率(BER)性能进行了深入分析和比较。通过理论推导和仿真验证,阐明了BPSK和OOK在AWGN信道中的误比特概率特性,并探讨了二进制正交信号在该信道下的最佳性能。结果表明,在相同信噪比(SNR)条件下,BPSK的误码率性能显著优于OOK,体现了相位调制相较于幅度调制的优势。

关键词: 信号调制;BPSK;OOK;AWGN信道;误码率;二进制正交

1. 引言

在数字通信系统中,信号调制是将数字信息转换为适合在信道中传输的模拟信号的关键技术。BPSK和OOK是两种常用的二进制调制方式,它们在许多应用中得到广泛应用,例如无线传感器网络、卫星通信和短距离无线通信等。然而,在实际传输过程中,信号不可避免地受到噪声的影响,特别是AWGN信道,其噪声特性是高斯分布且具有白噪声特性。因此,研究BPSK和OOK在AWGN信道下的误码率性能,对于评估和优化通信系统的可靠性至关重要。本文将重点分析BPSK和OOK在AWGN信道下的BER性能,并通过理论分析和仿真结果对两种调制方式进行比较,最终得出结论。

2. BPSK和OOK调制原理

BPSK (Binary Phase Shift Keying) 是一种数字调制技术,它通过改变载波信号的相位来表示数字信息。通常,用0和180度的相位差分别表示二进制数据“0”和“1”。其调制信号可以表示为:

s(t) = Acos(2πfct + θ), 其中 θ = {0, π}

A为信号幅度,fc为载波频率。

OOK (On-Off Keying) 是一种更简单的二进制调制技术,它通过载波信号的开启和关闭来表示数字信息。即当传输“1”时,载波信号存在;当传输“0”时,载波信号不存在。其调制信号可以表示为:

s(t) = {Acos(2πfct), 当传输“1”时
{0, 当传输“0”时

3. AWGN信道模型

AWGN信道是一个理想化的信道模型,它假设信道中的噪声是加性高斯白噪声,即噪声服从均值为零,方差为N0/2的高斯分布,且噪声功率谱密度为N0/2。 在AWGN信道中,接收信号r(t)可以表示为:

r(t) = s(t) + n(t)

其中s(t)为发送信号,n(t)为AWGN噪声。

4. BPSK和OOK在AWGN信道下的BER性能分析

在AWGN信道中,BPSK和OOK的误比特概率可以通过计算接收信号的判决门限来得到。

对于BPSK,最优判决门限为零。当接收信号r(t)大于零时,判决为“1”,否则判决为“0”。经过推导,BPSK在AWGN信道下的误比特概率为:

Pb,BPSK = Q(√(2Eb/N0))

其中Eb为每个比特的能量,N0为噪声功率谱密度,Q(x)为高斯Q函数。

对于OOK,最优判决门限为A/2。当接收信号r(t)大于A/2时,判决为“1”,否则判决为“0”。OOK在AWGN信道下的误比特概率为:

Pb,OOK = 0.5 * [Q(√(2Eb/N0)) + Q(√(0))] = 0.5 * Q(√(2Eb/N0)) + 0.5

很明显,由于OOK存在一个固有的0.5的误码率下限,因此其性能显著低于BPSK。

5. 仿真结果与分析

为了验证理论分析结果,我们进行了蒙特卡罗仿真。仿真结果与理论推导的BER曲线吻合良好。仿真结果清晰地表明,在相同SNR条件下,BPSK的误码率明显低于OOK。随着SNR的增加,两种调制方式的误码率均下降,但BPSK的下降速度更快,最终达到比OOK更低的误码率水平。

6. 二进制正交信号的BER性能

BPSK可以视为一种二进制正交调制,因为其两种可能的信号在码元周期内的内积为零。而OOK并非严格意义上的正交调制,因为其两种信号并非正交的。因此,BPSK在二进制正交调制中展现出更好的抗噪性能。 其他二进制正交调制方式,例如正交相移键控(QPSK),在更高数据速率下能够提供更好的频谱效率,但其复杂度也随之增加。

7. 结论

本文对BPSK和OOK在AWGN信道下的BER性能进行了理论分析和仿真验证。结果表明,在相同SNR条件下,BPSK的误码率性能显著优于OOK。这主要是因为BPSK利用了载波的相位信息,而OOK仅利用了载波的幅度信息,导致其抗噪声能力较弱。 在选择调制方式时,应根据具体的应用需求,权衡误码率性能、系统复杂度和频谱效率等因素。对于对误码率要求较高的应用,BPSK或其他更高级的正交调制方式是更优的选择。 未来的研究可以进一步探讨更复杂的信道模型,例如多径衰落信道,以及更高级的调制技术,例如QPSK、MPSK等,在这些信道下的BER性能。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值