【水光互补优化调度】基于非支配排序遗传算法的多目标水光互补优化调度附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

水能和太阳能作为两种清洁、可再生的能源形式,在应对日益严峻的能源危机和环境问题方面具有重要的战略意义。然而,水能资源受季节性降雨影响,具有明显的丰枯期特征,而太阳能则受天气条件的影响,具有间歇性和波动性。单一依靠水能或太阳能发电难以保证电网的稳定性和可靠性。因此,将水能和太阳能进行互补利用,构建水光互补系统,能够有效平滑电源输出,提高可再生能源的利用率,降低电网的运营成本,并减少对化石燃料的依赖,具有显著的经济效益和社会效益。然而,水光互补系统的优化调度涉及多个目标,例如发电成本、电网稳定性、环保效益等,这些目标之间往往存在冲突和制约关系,难以通过传统的单目标优化方法有效解决。因此,本文旨在探讨一种基于非支配排序遗传算法(NSGA-II)的多目标优化方法,以实现水光互补系统的优化调度。

一、水光互补系统的特点与挑战

水光互补系统通过优化水电站和光伏电站的发电计划,充分利用水能和太阳能的互补特性,从而提高系统的整体性能。具体而言,水光互补系统的特点主要体现在以下几个方面:

  • 互补性:

     水电站具有调峰能力强、响应速度快的特点,可以用来弥补光伏电站的间歇性和波动性,从而保证电网的稳定性和可靠性。反之,在丰水期,水电站的发电量可以减少,从而为光伏电站的发电提供空间,降低水资源浪费。

  • 经济性:

     水光互补系统可以有效降低发电成本。通过优化水电站和光伏电站的发电比例,可以充分利用廉价的水能和太阳能资源,减少对高成本化石燃料的依赖。

  • 环境友好性:

     水光互补系统可以减少温室气体排放,降低环境污染。通过替代部分化石燃料发电,可以有效降低二氧化碳、二氧化硫等污染物的排放,改善空气质量。

尽管水光互补系统具有诸多优势,但也面临着一些挑战,主要包括:

  • 调度复杂性:

     水光互补系统的优化调度涉及多个变量,例如水电站的发电量、光伏电站的发电量、水库水位等,这些变量之间相互影响,使得调度问题变得非常复杂。

  • 多目标冲突:

     水光互补系统的优化调度往往涉及多个目标,例如发电成本最小化、电网稳定性最大化、环保效益最大化等。这些目标之间往往存在冲突和制约关系,难以同时达到最优。

  • 不确定性:

     水光互补系统的运行受到多种不确定性因素的影响,例如降雨量、光照强度、负荷需求等,这些不确定性因素会影响系统的发电量和运行成本,增加了调度的难度。

二、非支配排序遗传算法(NSGA-II)的原理与优势

非支配排序遗传算法(NSGA-II)是一种经典的多目标优化算法,其核心思想是基于Pareto支配关系对种群进行排序,并采用拥挤度和拥挤距离来保持种群的多样性。NSGA-II具有以下几个关键步骤:

  • 非支配排序:

     NSGA-II首先根据Pareto支配关系对种群中的个体进行排序。对于种群中的每个个体,算法将其与种群中的其他个体进行比较,如果个体 A 在所有目标函数上都不比个体 B 差,并且至少在一个目标函数上比个体 B 好,则称个体 A 支配个体 B。根据支配关系,将种群中的个体划分为不同的非支配层,第一层是非支配个体,第二层是除了第一层之外的非支配个体,依此类推。

  • 拥挤度计算:

     为了保持种群的多样性,NSGA-II引入了拥挤度概念。拥挤度是指种群中给定个体周围个体的密度。对于每个目标函数,算法首先对种群中的个体进行排序,然后计算每个个体的拥挤度,拥挤度越高,表示该个体周围的个体越密集。

  • 拥挤距离计算:

     拥挤距离是指种群中给定个体与其相邻个体的距离。对于每个目标函数,算法首先对种群中的个体进行排序,然后计算每个个体的拥挤距离,拥挤距离越大,表示该个体周围的个体越分散。

  • 选择、交叉和变异:

     NSGA-II采用锦标赛选择机制,根据个体的非支配层和拥挤距离选择优秀的个体进行交叉和变异操作,从而生成新的种群。

与传统的单目标优化算法相比,NSGA-II具有以下优势:

  • 可以处理多目标优化问题:

     NSGA-II可以同时优化多个目标函数,并得到一组Pareto最优解,从而为决策者提供更多的选择。

  • 具有良好的全局搜索能力:

     NSGA-II采用遗传算法的框架,可以有效地搜索解空间,避免陷入局部最优解。

  • 可以保持种群的多样性:

     NSGA-II采用拥挤度和拥挤距离来保持种群的多样性,避免种群过早收敛。

  • 计算效率高:

     NSGA-II的计算复杂度较低,可以处理大规模的优化问题。

三、基于NSGA-II的水光互补优化调度模型

为了将NSGA-II应用于水光互补系统的优化调度,需要建立相应的数学模型,包括目标函数、约束条件和决策变量。

  • 目标函数: 根据实际需求,可以设置多个目标函数。例如,可以设置发电成本最小化、电网稳定性最大化、环保效益最大化等目标函数。

    • 发电成本最小化:

       包括水电站的运行成本、光伏电站的运行维护成本、以及购电成本等。

    • 电网稳定性最大化:

       可以通过约束电网的电压、频率等参数在合理范围内,或者通过设置惩罚函数来降低电网的风险。

    • 环保效益最大化:

       可以通过减少温室气体排放量来实现。

  • 约束条件: 约束条件包括水电站的运行约束、光伏电站的运行约束、以及电网的运行约束等。

    • 水电站的运行约束:

       包括水库水位约束、发电流量约束、出力约束等。

    • 光伏电站的运行约束:

       包括光照强度约束、出力约束等。

    • 电网的运行约束:

       包括功率平衡约束、电压约束、潮流约束等。

  • 决策变量: 决策变量是指需要优化的变量,例如水电站的发电量、光伏电站的发电量、水库水位等。

基于上述模型,可以利用NSGA-II进行水光互补系统的优化调度。具体步骤如下:

  1. 初始化种群:

     随机生成一组初始解,每个解代表一种水光互补系统的调度方案。

  2. 计算目标函数值:

     根据调度方案计算每个个体的目标函数值,包括发电成本、电网稳定性指标、以及环保效益指标。

  3. 非支配排序:

     根据Pareto支配关系对种群中的个体进行排序,将种群划分为不同的非支配层。

  4. 拥挤度计算:

     计算每个个体的拥挤度,用于保持种群的多样性。

  5. 选择:

     采用锦标赛选择机制,根据个体的非支配层和拥挤度选择优秀的个体。

  6. 交叉:

     对选择的个体进行交叉操作,生成新的个体。

  7. 变异:

     对新的个体进行变异操作,增加种群的多样性。

  8. 更新种群:

     将新的个体加入到种群中,并重复步骤2-7,直到满足终止条件。

四、结论与展望

本文探讨了一种基于非支配排序遗传算法(NSGA-II)的多目标优化方法,用于水光互补系统的优化调度。该方法可以同时优化多个目标,例如发电成本、电网稳定性、环保效益等,并得到一组Pareto最优解,为决策者提供更多的选择。NSGA-II算法具有良好的全局搜索能力和保持种群多样性的能力,可以有效地解决水光互补系统的复杂优化调度问题。

然而,水光互补系统的优化调度是一个复杂的问题,仍然存在一些挑战,未来的研究方向可以包括:

  • 考虑不确定性:

     水光互补系统的运行受到多种不确定性因素的影响,未来的研究可以考虑这些不确定性因素,并设计鲁棒性更强的调度方案。

  • 引入人工智能技术:

     可以将人工智能技术,例如机器学习、深度学习等,应用于水光互补系统的优化调度,从而提高调度的效率和精度。

  • 与其他能源系统集成:

     水光互补系统可以与其他能源系统,例如风能、储能等,进行集成,从而构建更加灵活和可靠的综合能源系统。

⛳️ 运行结果

🔗 参考文献

[1] 刘书明,李明明,王欢欢,等.基于NSGA-Ⅱ算法的给水管网多目标优化设计[J].中国给水排水, 2015, 31(5):4.DOI:CNKI:SUN:GSPS.0.2015-05-012.

[2] 祝典.基于非支配遗传算法的无源滤波器优化设计[D].华北电力大学(北京) 华北电力大学[2025-03-11].DOI:10.7666/d.y1342806.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值