【绘制Venn图】最强 Venn Chart 作图:双圈、三圈附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

维恩图 (Venn Diagram),以其简洁直观的图像化表达能力,在集合论、逻辑推理、数据分析乃至日常沟通中发挥着至关重要的作用。它将抽象的概念具象化,使得不同集合之间的关系,诸如交集、并集、补集等,能够一目了然。本文将深入探讨维恩图的绘制精髓,着重分析双圈和三圈维恩图的构建方法、应用场景,并阐述如何通过严谨的逻辑思考和巧妙的图形表达,将维恩图的效用发挥到极致。

一、维恩图的理论基础与核心思想

维恩图是英国逻辑学家约翰·维恩 (John Venn) 于1880年提出的一种图表,用于表示集合之间的逻辑关系。其核心思想在于:使用封闭曲线 (通常为圆形或椭圆形) 代表不同的集合,而曲线之间的重叠区域则表示集合之间的交集。位于所有曲线之外的区域则代表全集中不属于任何集合的元素。

维恩图的优势在于其直观性和易懂性。即便是不具备深厚数学基础的人,也能通过观察维恩图快速理解集合之间的关系。此外,维恩图还具备一定的灵活性,可以根据需要进行扩展,以表示更多集合之间的复杂关系。

二、双圈维恩图的构建与应用

双圈维恩图是最基础的维恩图形式,它使用两个圆来表示两个集合。这两个圆可以相互独立 (表示两个集合没有交集)、部分重叠 (表示两个集合有交集) 或完全包含 (表示一个集合是另一个集合的子集)。

构建双圈维恩图的关键步骤如下:

  1. 定义集合:

     首先需要明确两个集合所代表的具体内容。例如,集合A可以代表“喜欢阅读的人”,集合B可以代表“喜欢运动的人”。

  2. 绘制圆形:

     使用圆形分别代表两个集合,确保圆形的大小能够反映集合中元素的数量 (并非必须精确比例,但应尽量体现相对大小)。

  3. 考虑交集:

     确定两个集合是否存在交集,即是否存在既喜欢阅读又喜欢运动的人。如果存在交集,则两个圆形需要部分重叠。

  4. 填充区域:

     根据集合的定义和交集的确定,将相应的元素填入不同的区域。例如,只喜欢阅读的人填入集合A但不属于交集的区域,只喜欢运动的人填入集合B但不属于交集的区域,既喜欢阅读又喜欢运动的人填入交集区域。

  5. 标注区域:

     清晰标注每个区域所代表的含义,例如“只喜欢阅读”、“只喜欢运动”、“既喜欢阅读又喜欢运动”等。

双圈维恩图的应用场景非常广泛,例如:

  • 市场分析:

     可以用两个集合分别代表“购买产品A的顾客”和“购买产品B的顾客”,通过观察交集区域,了解哪些顾客同时购买了两种产品,从而制定相应的营销策略。

  • 用户画像:

     可以用两个集合分别代表“男性用户”和“喜欢体育运动的用户”,通过观察交集区域,了解哪些男性用户喜欢体育运动,从而更好地了解目标用户群体。

  • 逻辑判断:

     可以用两个集合分别代表两个命题,通过观察维恩图,判断两个命题之间的关系,例如是否相互独立、是否存在蕴含关系等。

三、三圈维恩图的构建与应用

三圈维恩图是在双圈维恩图的基础上进行扩展,使用三个圆来表示三个集合。相较于双圈维恩图,三圈维恩图能够表示更为复杂的关系,例如三个集合之间的交集、两两之间的交集、以及全集减去这三个集合的补集等。

构建三圈维恩图的难点在于:

  1. 确定区域数量:

     三个集合的维恩图共有2^3 = 8个区域,需要确保每个区域都被充分考虑。

  2. 逻辑关系复杂:

     需要仔细分析三个集合之间的逻辑关系,例如是否存在某个集合是另一个集合的子集,或者两个集合的交集是第三个集合的子集等。

  3. 数据收集困难:

     需要收集足够的数据,才能准确地填充每个区域,保证维恩图的准确性。

构建三圈维恩图的具体步骤如下:

  1. 定义集合:

     明确三个集合所代表的具体内容。例如,集合A可以代表“学习英语的人”,集合B可以代表“学习数学的人”,集合C可以代表“学习编程的人”。

  2. 绘制圆形:

     使用圆形分别代表三个集合,确保三个圆形相互交叉,形成8个区域。

  3. 确定交集:

     依次确定两两集合之间的交集,以及三个集合的交集。

  4. 填充区域:

     根据集合的定义和交集的确定,将相应的元素填入不同的区域。注意要仔细区分每个区域的含义,例如“只学习英语”、“只学习数学”、“只学习编程”、“既学习英语又学习数学”、“既学习英语又学习编程”、“既学习数学又学习编程”、“同时学习英语、数学和编程”等。

  5. 标注区域:

     清晰标注每个区域所代表的含义,避免混淆。

三圈维恩图的应用场景更为广泛,例如:

  • 产品定位:

     可以用三个集合分别代表三个不同的产品特性,通过观察维恩图,了解哪些产品同时具备多种特性,从而进行更精准的产品定位。

  • 人才选拔:

     可以用三个集合分别代表三种不同的能力,通过观察维恩图,了解哪些候选人同时具备多种能力,从而选拔更合适的人才。

  • 风险评估:

     可以用三个集合分别代表三种不同的风险因素,通过观察维恩图,了解哪些因素同时存在,从而评估风险等级。

四、维恩图绘制的注意事项与技巧

  • 逻辑清晰:

     绘制维恩图的首要前提是逻辑清晰,需要准确理解集合之间的关系,避免出现逻辑错误。

  • 比例适当:

     虽然维恩图并不要求严格的比例,但应该尽量体现集合的大小关系,以便更直观地表达数据。

  • 清晰标注:

     务必清晰标注每个区域的含义,避免混淆,提高维恩图的可读性。

  • 善用工具:

     可以使用专业的绘图软件或在线工具来绘制维恩图,例如Lucidchart、Venngage等,这些工具能够简化绘制过程,提高效率。

  • 迭代优化:

     绘制维恩图并非一蹴而就,需要不断迭代优化,根据实际情况进行调整,以确保维恩图的准确性和有效性。

五、结论

维恩图作为一种强大的可视化工具,能够清晰地表达集合之间的关系,在各个领域都发挥着重要的作用。掌握维恩图的绘制精髓,特别是双圈和三圈维恩图的构建方法和应用场景,对于提高逻辑思维能力、数据分析能力和沟通能力都具有重要意义。通过严谨的逻辑思考、巧妙的图形表达和不断地实践,我们可以将维恩图的效用发挥到极致,为解决实际问题提供有力的支持。未来,随着数据规模的不断扩大和应用场景的不断拓展,维恩图将会继续发挥其独特的优势,在更多领域展现其价值。

⛳️ 运行结果

🔗 参考文献

[1] 陈超.制造业服务化背景下企业知识缺口的管理研究[D].江苏大学,2015.DOI:10.7666/d.Y2799854.

[2] 陈海生,袁江平,付文婷,等.基于MATLAB的新色域对比度量及其适用性评价[J].包装学报, 2018, 10(6):8.DOI:CNKI:SUN:BZXB.0.2018-06-013.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值