【红外图像】利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球对能源效率和环境保护意识的日益增强,制冷系统在现代社会中扮演着至关重要的角色。无论是家用电器、工业生产还是交通运输,制冷系统都发挥着不可替代的作用。然而,传统的制冷剂对环境具有负面影响,促使人们不断探索新型环保制冷剂。同时,制冷系统性能的评估对于优化设计、延长使用寿命以及降低能源消耗至关重要。本文将探讨利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估的研究,旨在展示红外热像技术在制冷领域的应用前景,并为其发展方向提供参考。

传统的制冷系统性能评估方法往往依赖于安装在系统各关键位置的传感器,例如温度传感器、压力传感器和流量计等。这些传感器可以提供精确的局部测量数据,但存在以下局限性:首先,传感器的安装可能需要改造制冷系统,破坏其原有结构,甚至影响其运行;其次,传感器的数量有限,无法提供整个系统的温度分布信息,对于某些复杂的故障诊断而言,信息不足;最后,传统传感器的数据采集和分析过程较为繁琐,效率较低。

红外热像技术作为一种非接触式的温度测量手段,克服了传统方法的诸多不足。红外热像仪能够将物体表面的红外辐射转化为可见的热像图,从而直观地显示物体表面的温度分布。这为制冷系统性能评估带来了革命性的变革。利用红外图像处理技术,我们可以快速、准确地获取制冷系统的表面温度分布信息,并基于这些信息对系统的性能进行评估和诊断。

具体而言,红外图像处理技术在制冷系统性能评估中可以应用于以下几个方面:

1. 制冷剂泄漏检测: 制冷剂泄漏是制冷系统常见的问题,会导致系统效率降低,甚至损坏。传统的泄漏检测方法通常依赖于声音、气味或者化学试剂,效率较低且存在一定的风险。而红外热像仪能够清晰地显示泄漏点周围的温度变化,由于制冷剂泄漏时会发生相变,吸收周围热量,导致泄漏点附近的温度降低,从而在热像图中形成低温区域。通过分析热像图中的温度分布,可以快速准确地定位泄漏点,避免不必要的损失。红外图像处理算法,例如图像增强、边缘检测等,可以进一步提高泄漏点的识别精度。

2. 冷凝器和蒸发器性能评估: 冷凝器和蒸发器是制冷系统的关键部件,其性能直接影响着整个系统的效率。冷凝器的主要功能是将制冷剂从气态冷凝成液态,而蒸发器则将液态制冷剂蒸发成气态,吸收周围热量。利用红外热像仪可以观察冷凝器和蒸发器表面的温度分布,分析其换热效率。例如,在冷凝器中,均匀且低温的表面温度分布表明冷凝效果良好;而在蒸发器中,均匀且高温的表面温度分布则表明蒸发效果良好。如果热像图中出现明显的温度梯度或者异常的温度分布,则可能表明冷凝器或蒸发器存在堵塞、结垢或者其他问题。此外,可以通过计算冷凝器和蒸发器表面的平均温度,并结合制冷剂的物理性质,估算其换热量,从而量化其性能。

3. 压缩机性能评估: 压缩机是制冷系统的核心动力部件,其性能直接决定了系统的制冷能力和能耗。红外热像仪可以用于监测压缩机的表面温度,分析其运行状态。例如,压缩机的表面温度过高可能表明其内部润滑不良、磨损严重或者存在过载情况。通过分析热像图中的温度分布,可以判断压缩机各部件的运行状态,例如电机、缸体、阀片等。此外,可以通过对比不同制冷剂充装下的压缩机表面温度,评估不同制冷剂对压缩机性能的影响。

4. 制冷系统管路的保温效果评估: 制冷系统管路的保温效果直接影响着系统的能量损失。保温效果差的管路会导致制冷剂温度升高或者降低,从而降低系统的制冷效率。利用红外热像仪可以检测管路的表面温度,分析其保温效果。表面温度与环境温度差异较大的管路表明其保温效果较差,需要进行改进。

5. 新型制冷剂性能评估: 随着环保要求的不断提高,新型制冷剂的研发和应用日益受到重视。利用红外图像处理技术可以对不同新型制冷剂充装的制冷系统进行性能对比评估。通过对比不同制冷剂充装下的冷凝器、蒸发器、压缩机等部件的表面温度分布和温度梯度,可以分析不同制冷剂的换热性能、压缩效率和能量效率。这为新型制冷剂的选择和优化提供了重要依据。

红外图像处理技术在制冷系统性能评估中不仅具有诸多优势,也面临着一些挑战。首先,红外热像仪的成本相对较高,限制了其在一些小型企业和家庭中的应用。其次,红外热像仪的测量精度受到多种因素的影响,例如环境温度、物体表面的发射率等。因此,需要对红外热像仪进行校准,并采取相应的补偿措施,以提高测量精度。此外,红外图像的处理和分析需要专业的知识和技能,需要进行专门的培训。

为了更好地将红外图像处理技术应用于制冷系统性能评估,还需要进行以下方面的研究:

  • 开发更高效的红外图像处理算法:

     例如,基于深度学习的图像分割算法,可以更准确地识别制冷系统的各个部件,并提取其温度信息;基于模式识别的故障诊断算法,可以根据热像图中的温度分布,自动诊断制冷系统的故障。

  • 研究不同制冷剂的红外特征:

     不同制冷剂的物理性质和换热特性不同,其在热像图中的表现也会有所差异。因此,需要研究不同制冷剂的红外特征,建立制冷剂库,以便更准确地分析制冷系统的性能。

  • 开发智能化的制冷系统性能评估系统:

     将红外热像仪与传感器、数据采集系统和智能分析软件相结合,开发智能化的制冷系统性能评估系统,实现对制冷系统性能的实时监测、分析和预警。

总而言之,利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估具有重要的研究意义和应用价值。通过非接触式地获取制冷系统的表面温度分布信息,可以快速、准确地评估系统的性能,诊断故障,优化设计,并选择合适的制冷剂。随着红外热像技术的不断发展和应用成本的降低,相信红外图像处理技术将在制冷领域发挥越来越重要的作用,为提高制冷系统的能源效率和环境保护水平做出贡献。未来,结合人工智能、大数据等技术,红外热像技术将在制冷系统智能运维方面展现更加广阔的应用前景。

⛳️ 运行结果

🔗 参考文献

[1] 陈雨生.基于场景分类的自适应红外图像增强算法技术研究[D].电子科技大学,2023.

[2] 李洪周,袁胜智,陈榕,等.复杂背景的红外图像过渡区提取与分割[J].激光与红外, 2009, 39(2):3.DOI:10.3969/j.issn.1001-5078.2009.02.027.

[3] 夏清,张振鑫,王婷婷,等.基于改进Sobel算子的红外图像边缘提取算法[J].激光与红外, 2013, 43(10):4.DOI:10.3969/j.issn.1001-5078.2013.10.17.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值