✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在现代工业控制领域,如何有效应对复杂、耦合性强的多输入多输出(MIMO)系统是一个长期且关键的挑战。传统的控制方法,如比例-积分-微分(PID)控制,在单变量或解耦系统下表现良好,但面对强耦合、存在约束和时变特性的多变量系统时,其性能往往难以满足要求。模型预测控制(MPC)作为一种先进的控制策略,凭借其基于模型预测、滚动优化和约束处理的独特优势,在处理多变量系统控制问题方面展现出卓越的能力。本文旨在深入探讨MPC在多变量控制系统中的应用,并重点研究其与状态空间模型的紧密联系,分析状态空间模型如何为MPC提供强大的理论基础和实现手段。
多变量系统控制的挑战
多变量系统通常具有多个输入和多个输出,输入和输出之间存在复杂的相互作用,即耦合效应。一个输入变量的变化不仅影响与之直接对应的输出变量,还可能对其他输出变量产生影响。这种耦合性使得传统的单回路控制方法难以取得令人满意的效果。例如,在化工生产过程中,反应器的温度和压力之间往往存在耦合关系,改变加热功率会同时影响温度和压力。此外,实际工业系统往往受到各种物理和操作约束的限制,如控制变量的幅值限制、速率限制以及状态变量的安全范围等。如何有效地将这些约束纳入控制设计中,避免违反约束,是多变量控制面临的又一重要挑战。传统控制方法通常难以直接、有效地处理这些约束,往往需要额外的约束处理机制,增加了设计的复杂性。
模型预测控制(MPC)的基本原理
MPC的核心思想是利用系统的数学模型预测系统未来一段时间内的动态行为,然后基于这个预测,在满足各种约束的前提下,优化未来一段时间内的控制输入序列,使得某个性能指标达到最优。在每个采样时刻,MPC控制器并不直接实施计算出的整个控制序列,而是只实施第一个控制输入,然后在下一个采样时刻重复上述过程,根据新的测量值和系统状态,重新进行预测和优化。这种滚动优化的机制使得MPC能够应对模型不确定性、外部扰动和时变特性。
MPC的三个关键组成部分是:
- 预测模型:
用于预测系统未来一段时间内的输出或状态。模型的精度直接影响预测的准确性和控制性能。
- 优化问题:
包含一个性能指标(目标函数)和一系列约束。优化算法需要求解一个在线的优化问题,通常是一个二次规划问题,以找到最优的控制输入序列。
- 滚动优化:
在每个采样时刻,根据最新的信息重新进行预测和优化,只实施第一个优化后的控制输入,然后进入下一个采样时刻。
状态空间模型在MPC中的作用
状态空间模型作为一种描述系统动态行为的数学框架,非常适合用于构建MPC的预测模型。
- 统一的数学框架:
状态空间模型能够简洁地描述多变量系统的输入、输出和内部状态之间的关系,为MPC的预测模型提供了统一的数学框架。通过状态向量,可以全面地描述系统的内部状态,为预测未来行为奠定基础。
- 易于处理状态约束:
状态空间模型直接提供了系统的状态向量,这使得在优化问题中方便地加入状态约束。例如,可以设置状态向量的某些分量必须保持在某个范围内。这对于保证系统的安全运行至关重要。
- 系统结构的清晰呈现:
状态空间模型能够清晰地呈现系统的内部结构和变量之间的相互关系,有助于理解系统的动态特性,并指导MPC模型的构建和参数选择。
基于状态空间模型的MPC在多变量系统中的优势
- 有效处理耦合:
通过状态空间模型,MPC能够清晰地看到不同输入对所有输出的影响,并在优化过程中考虑这些相互作用,从而有效地处理多变量系统的耦合。通过优化所有控制输入,MPC可以找到最佳的协调控制策略。
- 灵活处理约束:
状态空间模型方便地将状态约束和输出约束纳入优化问题中,MPC通过求解带有约束的优化问题,能够确保系统在满足约束的情况下运行,提高了系统的安全性和可靠性。
- 前馈控制潜力:
如果状态空间模型包含可测量的扰动输入,MPC可以通过预测扰动对系统的影响,提前调整控制输入,实现前馈控制,进一步提高系统的抗扰能力。
- 易于扩展和集成:
状态空间模型是一种标准化的描述方法,基于状态空间模型的MPC易于与其他控制方法或系统集成,便于构建更复杂的控制系统。
挑战与展望
尽管基于状态空间模型的MPC在多变量控制中展现出强大的能力,但仍然存在一些挑战:
- 模型精度:
MPC的性能高度依赖于预测模型的准确性。对于复杂的非线性系统,建立精确的状态空间模型可能非常困难。模型不确定性和模型失配会导致预测误差,从而影响控制性能。
- 在线计算负担:
MPC需要在每个采样时刻在线求解优化问题。对于大规模多变量系统和较长的预测时域,优化问题的规模可能非常大,对计算资源要求较高。
- 非线性系统:
本文主要讨论基于线性状态空间模型的MPC。对于强非线性系统,直接应用线性MPC可能效果不佳。非线性MPC(NMPC)虽然能够处理非线性,但其在线优化问题求解更加复杂。
- 参数整定:
MPC中存在许多参数需要整定,如预测时域、控制时域、权重矩阵等,这些参数的选取对控制性能影响很大,整定过程可能比较繁琐。
未来研究方向包括:
- 数据驱动的建模方法:
利用机器学习和深度学习技术,从大量数据中学习系统的状态空间模型,提高模型精度,尤其对于复杂非线性系统。
- 分布式和协同MPC:
对于大型复杂系统,可以将其分解为多个子系统,采用分布式或协同MPC策略,降低计算负担,提高系统的可扩展性。
- 鲁棒MPC:
发展能够有效处理模型不确定性、扰动和外部干扰的鲁棒MPC算法。
- 强化学习与MPC的结合:
探索将强化学习与MPC相结合,利用强化学习的自学习能力优化MPC的性能和参数整定。
结论
模型预测控制(MPC)凭借其基于模型预测、滚动优化和约束处理的独特优势,已成为解决多变量系统控制问题的重要工具。状态空间模型作为一种强大的数学框架,为MPC提供了构建预测模型的坚实基础,使得MPC能够有效地处理多变量系统的耦合、约束和复杂动态。通过基于状态空间模型的预测和在线优化,MPC能够在满足各种约束的同时,实现对多变量系统的鲁态控制和最优性能。虽然仍面临模型精度和计算负担等挑战,但随着计算能力的提升和理论研究的深入,基于状态空间模型的MPC在未来将继续在复杂工业控制领域发挥越来越重要的作用。深入研究状态空间模型与MPC的结合,对于理解和应用MPC至关重要,也将推动多变量控制技术的不断发展。
⛳️ 运行结果
🔗 参考文献
[1] 陈超.基于状态空间模型的快速预测控制算法研究[D].华东理工大学,2015.
[2] 王丽君,孟迎军,罗为,等.基于状态空间多变量误差校正的预测控制[J].控制工程, 2019, 26(3):6.DOI:CNKI:SUN:JZDF.0.2019-03-028.
[3] 郑鑫,克金超,陈亚萌,等.基于SVDF的多变量预测控制算法及应用研究[J].制造业自动化, 2022, 44(10):212-216.DOI:10.3969/j.issn.1009-0134.2022.10.048.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇