【塑料热压成型预测】原子搜索算法优化支持向量机ASO-SVM塑料热压成型预测(多输入单输出)【含Matlab源码 3378期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab神经网络预测与分类(仿真科研站版)仿真内容点击👇
Matlab神经网络预测与分类(仿真科研站版)

⛄一、原子搜索算法优化支持向量机

塑料热压成型是塑料加工业中简单、普遍之加工方法,主要是利用加热加工模具后,注入试料,以压力将模型固定于加热板,控制试料的熔融温度和时间,融化后硬化、冷却,再予以取出模型成品即可。热压成型具有模具便宜、成品厚度均匀等优点,其产品有冰箱门的内衬、汽车档泥板、汽车底盘、软质饮水杯、标示牌、包装材料及其它厚度均匀的产品。
在塑料热压成型中,工艺参数的选择起着至关重要的作用,确定原则是选择合适的固化温度、固化时间、固化压力、升温速度、加压温度和加压时间,保证塑料成型时获得较高性能的制件。而传统的确定方法主要依靠多次实验,采用经验设计准则设计,完全取决于设计者的经验,由此所得的工艺参数往往须经过多次试验才能调整出合适的参数,效率很低。因此需要建立获得较高性能制件的各热压成型工艺参数之间的关系,文中利用人工神经网络建立塑料热压成型工艺参数的数学模型,用遗传算法对参数进行优化,较好地控制了工艺参数,提高了制件性能。

1 塑料热压成型实验方法及其工艺参数和目标函数的确定
实验原材料为塑料树脂材料 PP( 聚丙烯) ,实验设备为液压式万能试验机、箱式电阻炉和自制的搅拌机,将原材料放入搅拌机中搅拌均匀后,放入箱式电阻炉加热到 175 ~ 180 ℃,把加热后的原材料放入到预热到相同温度的模具中,在液压式万能试验机上加压,保压一定时间,卸载冷却后脱模,即可得到试样。塑料热压成型过程中,成型产品精度是由多个成型参数共同决定的,成型工艺参数对产品精度的影响呈非线性变化,且各参数之间具有复杂的耦合关系,难以建立统一的数学公式。影响塑料热压成型的工艺参数主要有固化温度( Ts ) 、固化时间( ts ) 、固化压力( Ps ) 、升温速度( Vs ) 、加压温度( Tj) 和加压时间( tj) ,文章选择上述这 6 个工艺参数为控制因子。
塑料热压成型产品质量问题有很多,文章从塑料热压成型件力学性能的角度研究横向拉伸模量 ( Eh ) 、横 向 拉 伸 强 度( Gh ) 、层间剪切强度( Gc ) 和含胶量( Q) ,将其作为研究的目标函数。

2 神经网络建模
2.1 人工神经网络模型

人工神经网络是在人类对其大脑神经网络认识理解的基础上,人工构造的能够实现某种功能的神经网络,在人工神经网络的实际应用中,大部分网络模型是采用 BP( Back Propagation) 网络或它的变化形式[1 - 6],其算法被称为误差反向传播法,即 BP算法,文章 BP 网络模型的拓扑结构如图 1 所示,它由 3 层组成,输入层为需要优化的工艺参数,固化温度( Ts ) 、固化时间( ts ) 、固化压力( Ps ) 、升温速度( Vs ) 、加压温度( Tj) 和加压时间( tj) ,这些参数是对塑料热压成型影响最大的因素,理论上很难确定,因此确定它们作为待优化的工艺参数; 输出层为优化目标,即横向拉伸模量( Eh ) 、横向拉伸强度( Gh ) 、层间剪切强度( Gc ) 和含胶量( Q) ; 中间层神经元数由 Kolmogorov 定理和实际情况共同确定[7],最终确定神经网络结构为 6-13-4。

2.2 实验样本的获取
通过上述分析结合实际加工经验,选定需要优化的工艺参数有: 固化温度( Ts ) 、固化时间( ts ) 、固化压力( Ps ) 、升温速度( Vs ) 、加压温度( Tj) 和加压时间( tj) 。采用正交试验法,实验样本( 见表 1) 由 27 个样本组成,由正交设计表设计得到,优化目标为横向拉伸模量( Eh ) 、横向拉伸强度( Gh ) 、层间剪切强度( Gc) 和含胶量( Q) 。随机选定 1、7、13、19、25 号为检验样本,其余为训练样本。

2.3 人工神经网络训练及检测
统一后的神经网络结构为 6-13-1,训练过程利用 M 语言编程和 MATLAB 神经网络工具箱函数来完成。采用 newff 函数生成一 个 前 馈 BP 神 经 网 络,trainlm 函 数 ( 基 于 LevenbergMarquardt 算法) 训练网络,神经网络结构和函数确定后,就开始训练。设定 err-goal( 网络期望误差最小值) 为 10 - 5,当神经网络的 SSE( 网络权值修订后的误差平方和) 达到 err-goal 时,如图2,神经网络训练结束。

⛄二、部分源代码

%% 清空环境变量
clear all
clc
%% 导入数据
X = xlsread(‘输入’);
Y = xlsread(‘输出’);
%%
% 设置训练集和测试集
%temp = randperm(size(X,1));%1代表多少行,2代表多少列
% 训练集—
P_train= X((1:24)😅‘;%冒号代表取出来是整行或者整列,‘代表转置
P_test = X((25:end)😅’;
M = size(P_train,2);
% 测试集—
T_train= Y((1:24)😅’;
T_test = Y((25:end)😅';
N = size(P_test,2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax(‘apply’, P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax(‘apply’, T_test, ps_output);

%% 转置以适应模型
p_train = p_train’; p_test = p_test’;
t_train = t_train’; t_test = t_test’;

%% 参数设置
Max_Iteration = 50; % 最大的进化代数
Atom_Num = 10; % 种群最大数量
Low = [0,0]; % 参数c的变化范围
Up = [100,100]; % 参数g的变化范围
Dim=2;
v = 5; % 交叉验证参数
%% 优化算法
% [bestCVaccuracy, bestc, bestg, trace] = ASOSVMcgForRegress(t_train, p_train, option);
[Fit_XBest,X_Best,trace]=ASO(Atom_Num,Max_Iteration,Low,Up,Dim,t_train, p_train,v);
%% 最佳参数
cmd = [’ -t 2’, ’ -c ', num2str(X_Best(1)), ’ -g ‘, num2str(X_Best(2)), ’ -s 3 -p 0.1’];

%% 模型训练
model = svmtrain(t_train, p_train, cmd);
mode1 = svmtrain(t_test, p_test, cmd);
%% 仿真预测
[t_sim1, error_1] = svmpredict(t_train, p_train, model);
[t_sim2, error_2] = svmpredict(t_test , p_test , mode1);

%% 数据反归一化
T_sim1 = mapminmax(‘reverse’,t_sim1,ps_output);
T_sim2 = mapminmax(‘reverse’,t_sim2,ps_output);

%% 均方根误差 RMSE
%% 均方根误差 RMSE
error1 = sqrt(sum((T_sim1’ - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2’).^2)./N);

%%
%决定系数
R1=eva1(T_train,T_sim1’);
R2=eva2(T_test,T_sim2’);

%%
%均方误差 MSE
mse1 = sum((T_sim1’ - T_train).^2)./M;
mse2 = sum((T_sim2’ - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1’-T_train);
RPD1=std(T_train)/SE1;

SE=std(T_sim2’-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1’));
MAE2 = mean(abs(T_test - T_sim2’));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1’)./T_train));
MAPE2 = mean(abs((T_test - T_sim2’)./T_test));
%% 训练集绘图
figure
%plot(1:M,T_train,‘r-',1:M,T_sim1,‘b-o’,‘LineWidth’,1)
plot(1:M,T_train,'r-
’,1:M,T_sim1,‘b-o’,‘LineWidth’,1.5)
legend(‘真实值’,‘预测值’)
xlabel(‘预测样本’)
ylabel(‘预测结果’)
string={‘训练集预测结果对比’;[‘(R^2 =’ num2str(R1) ’ RMSE= ’ num2str(error1) ’ MSE= ’ num2str(mse1) ’ RPD= ’ num2str(RPD1) ‘)’ ]};
title(string)
%% 预测集绘图
figure
plot(1:N,T_test,‘r-‘,1:N,T_sim2,‘b-o’,‘LineWidth’,1.5)
legend(‘真实值’,‘预测值’)
xlabel(‘预测样本’)
ylabel(‘预测结果’)
string={‘测试集预测结果对比’;[’(R^2 =’ num2str(R2) ’ RMSE= ’ num2str(error2) ’ MSE= ’ num2str(mse2) ’ RPD= ’ num2str(RPD2) ‘)’]};
title(string)
%% 适应度曲线
figure
plot(1: length(trace), trace(:, 1), ‘r-’, ‘LineWidth’, 1.5);
title(‘ASO-SVM适应度曲线’, ‘FontSize’, 13);
xlabel(‘迭代次数’, ‘FontSize’, 10);
ylabel(‘适应度值’, ‘FontSize’, 10);
grid on
%% 测试集误差图
figure
plot(T_test’-T_sim2,'b-
’,‘LineWidth’,1.5)
xlabel(‘测试集样本编号’)
ylabel(‘预测误差’)
title(‘ASO-SVM测试集预测误差’)
grid on;
legend(‘ASO-SVM预测输出误差’)
%% 绘制线性拟合图
%% 训练集拟合效果图
figure
plot(T_train,T_sim1,‘*r’);
xlabel(‘真实值’)
ylabel(‘预测值’)
string = {‘训练集效果图’;[‘R^2_c=’ num2str(R1) ’ RMSEC=’ num2str(error1) ]};
title(string)
hold on ;h=lsline;
set(h,‘LineWidth’,1,‘LineStyle’,‘-’,‘Color’,[1 0 1])
%% 预测集拟合效果图
figure
plot(T_test,T_sim2,‘ob’);
xlabel(‘真实值’)
ylabel(‘预测值’)
string1 = {‘测试集效果图’;[‘R^2_p=’ num2str(R2) ’ RMSEP=’ num2str(error2) ]};
title(string1)
hold on ;h=lsline();
set(h,‘LineWidth’,1,‘LineStyle’,‘-’,‘Color’,[1 0 1])
%% 求平均
R3=(R1+R2)./2;
error3=(error1+error2)./2;
%% 总数据线性预测拟合图
tsim=[T_sim1’,T_sim2’]’
figure
plot(Y,tsim,‘ob’);
xlabel(‘真实值’)
ylabel(‘预测值’)
string1 = {‘所有样本拟合预测图’;[‘R^2_p=’ num2str(R3) ’ RMSEP=’ num2str(error3) ]};
title(string1)
hold on ;h=lsline();
set(h,‘LineWidth’,1,‘LineStyle’,‘-’,‘Color’,[1 0 1])
%% 打印出评价指标
disp([‘-----------------------误差计算--------------------------’])
disp([‘ASO-SVM的预测集的评价结果如下所示:’])
disp([‘平均绝对误差MAE为:’,num2str(MAE2)])
disp(['均方误差MSE为: ',num2str(mse2)])
disp(['均方根误差RMSEP为: ',num2str(error2)])
disp(['决定系数R^2为: ',num2str(R2)])
disp(['剩余预测残差RPD为: ',num2str(RPD2)])
disp([‘平均绝对百分比误差MAPE为: ‘,num2str(MAPE2)])
grid
%% 打印出评价指标
disp([’-----------------------误差计算--------------------------’])
disp([‘ASO-SVM最终的评价结果如下所示:’])
disp(['均方根误差RMSEP为: ',num2str(error3)])
disp(['决定系数R^2为: ',num2str(R3)])

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]纪良波,李永志,陈爱霞.基于神经网络和遗传算法的塑料热压成型多目标优化[J].塑料. 2012,41(03)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

  • 7
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 基于Tent混沌映射改进的原子搜索算法 (ASO) 是一种基于自然界的原子模型的优化算法,可以用于解决优化问题。BP神经网络是一种经典的人工神经网络模型,用于处理回归预测问题。将ASO算法应用于BP神经网络回归预测中,可以提高预测的准确率和性能。 首先,ASO算法基于Tent混沌映射来更新原子的位置,从而搜索最优解。Tent混沌映射通过非线性映射,能够充分利用混沌性质,提高搜索过程的多样性和随机性,有利于全局搜索。 在ASO算法中,原子的位置代表了神经网络模型中的参数权重。通过迭代更新原子的位置,可以优化BP神经网络的权重,从而提高预测的性能。在每一代迭代中,ASO算法根据目标函数的值来评估原子的适应性,并选择适应性较强的原子进行更新。通过这种方式,ASO算法能够寻找到BP神经网络的最优权重值,从而提高回归预测的准确性。 此外,与传统的优化算法相比,ASO算法具有以下优势:1)能够从全局范围寻找最优解,避免陷入局部最优解;2)具有较好的收敛性能,能够快速找到最优解;3)具有较高的搜索精度和准确性。 综上所述,基于Tent混沌映射改进的ASO算法可以应用于优化BP神经网络的权重,从而提高回归预测的精度和性能。该方法能够有效地解决回归预测问题,并具有广泛的应用前景。 ### 回答2: 基于Tent混沌映射改进的原子搜索算法(ASO)是一种基于群体智能的优化算法,它模拟了原子的行为,通过原子搜索来寻找最优解。而BP神经网络是一种常用的神经网络模型,通过学习数据的输入输出关系,用于回归预测问题。 在使用ASO优化BP神经网络回归预测时,首先需要定义BP神经网络的结构和参数。BP神经网络一般包输入层、隐藏层和输出层,以及相应的连接权重和偏置值。这些参数就是我们需要优化的目标。 接下来,将ASO算法引入到BP神经网络的参数优化过程中。ASO算法中的原子搜索过程可以通过调整BP神经网络参数的方式来实现。具体来说,可以用ASO算法来搜索合适的连接权重和偏置值,以使得神经网络在训练集上的预测误差尽可能小。 在ASO算法中,通过引入Tent混沌映射来确定搜索的方向和步长。Tent混沌映射是一种紧密相关的随机映射,具有较好的混沌特性,可以有效地增加搜索空间覆盖率。在优化BP神经网络的参数过程中,通过将Tent混沌映射应用于搜索方向和步长的调整,可以提高搜索的效率和收敛速度。 具体实现时,可以将Tent混沌映射的输出作为搜索方向和步长的调整值,与初始的连接权重和偏置值相结合,得到新的参数值。然后,通过BP神经网络的训练过程,计算相应的预测误差,并将该误差作为ASO算法的适应度函数,以指导下一次迭代搜索。 通过不断迭代和优化ASO算法能够逐步提高BP神经网络的预测性能,使其在回归预测问题中能够更好地拟合训练数据,并且具有更好的泛化能力。最终得到的优化后的BP神经网络可以用于进行准确的回归预测任务。 ### 回答3: 基于Tent混沌映射改进的原子搜索算法ASO)是一种优化算法。ASO通过模拟原子的行为来搜索最优解。BP神经网络是一种常用的回归预测模型,通过训练来学习数据的模式和规律。将ASO应用于BP神经网络回归预测中,可以提高预测的精度和效率。 首先,我们需要将ASO与BP神经网络回归预测相结合。在BP神经网络中,我们需要调整网络的权重和阈值,以使得网络的输出与实际值尽可能接近。而ASO可以通过搜索空间进行优化,寻找最优的权重和阈值组合,从而提高BP神经网络的预测能力。 接下来,我们需要修改ASO的搜索策略,使其适用于优化BP神经网络。一种可能的改进是使用Tent混沌映射来生成原子的运动路径。Tent混沌映射具有良好的随机性和混沌性质,可以帮助算法跳出局部最优解,增加搜索的多样性和全局性。 在ASO优化过程中,我们需要定义适应度函数来评估每个原子的优劣。对于优化BP神经网络回归预测问题,可以使用均方误差(MSE)作为适应度函数。MSE能够测量网络的输出与实际值之间的差异,越小代表预测结果越准确。 最后,我们通过迭代的方式,将ASO与BP神经网络回归预测相结合进行训练。每次迭代都会更新原子的位置和适应度值,直到找到最优解或达到预定的停止条件。 综上所述,基于Tent混沌映射改进的原子搜索算法可以优化BP神经网络回归预测。该方法能够提高预测的准确性和效率,为数据分析和预测问题提供了一种有效的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值