✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
DBN分类是一种基于深度置信网络-支持向量机(DBN-SVM)的数据分类预测算法。该算法结合了深度置信网络和支持向量机的优点,能够更准确地对数据进行分类预测。本文将介绍DBN分类的基本原理和应用场景,并探讨该算法在实际应用中的优势和不足。
DBN分类的基本原理是将深度置信网络和支持向量机相结合。深度置信网络是一种多层神经网络,其基本思想是通过逐层训练来提取数据的特征。支持向量机是一种常用的分类算法,其基本思想是通过寻找最优超平面来实现数据分类。DBN-SVM算法将深度置信网络和支持向量机相结合,首先使用深度置信网络提取数据特征,然后使用支持向量机对数据进行分类预测。该算法能够充分利用深度置信网络的特征提取能力和支持向量机的分类能力,从而提高数据分类预测的准确性。
DBN分类的应用场景包括图像分类、语音识别、自然语言处理等领域。在图像分类中,DBN分类可以通过学习图像的特征来实现对图像的分类;在语音识别中,DBN分类可以通过学习语音的特征来实现对语音的识别;在自然语言处理中,DBN分类可以通过学习文本的特征来实现对文本的分类。在实际应用中,DBN分类已经被广泛应用于各种领域,取得了不错的效果。
尽管DBN分类在数据分类预测方面具有很大的优势,但该算法也存在一些不足之处。首先,DBN分类需要大量的训练数据和计算资源,对于小规模数据集和计算能力有限的设备来说,该算法可能不太适合。其次,DBN分类的模型复杂度较高,需要较长的训练时间和调参时间,对于初学者来说,使用该算法可能存在一定的难度。
综上所述,DBN分类是一种基于深度置信网络-支持向量机的数据分类预测算法。该算法能够充分利用深度置信网络和支持向量机的优点,提高数据分类预测的准确性。在实际应用中,DBN分类已经被广泛应用于各种领域,但该算法也存在一些不足之处,需要根据具体情况进行选择和应用。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
本程序参考以下中文EI期刊,程序注释清晰,干货满满。
[1] 武凯,刘新忠,张笑雄,等.基于PCA-DBN的热连轧数据特征提取[J].冶金自动化, 2020, 44(3):5.DOI:CNKI:SUN:YJZH.0.2020-03-005.
[2] 王小艺,李柳生,孔建磊,等.基于深度置信网络-多类模糊支持向量机的粮食供应链危害物风险预警[J].食品科学, 2020, 41(19):8.DOI:10.7506/spkx1002-6630-20190916-205.