【MPC控制】基于模型预测控制MPC实现无人驾驶车辆轨迹跟踪附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

​1. 概述

模型预测控制(MPC)是一种先进的控制算法,它通过预测未来的系统状态和输出,来计算当前的控制输入。MPC在许多领域都有着广泛的应用,包括无人驾驶车辆的轨迹跟踪。

2. MPC控制原理

MPC控制的基本原理是,首先建立一个系统的数学模型,然后使用该模型来预测未来的系统状态和输出。接下来,MPC控制器会计算出一系列控制输入,使得系统在未来一段时间内的状态和输出能够满足预定的目标。

3. MPC控制在无人驾驶车辆轨迹跟踪中的应用

在无人驾驶车辆的轨迹跟踪中,MPC控制器可以用来计算出车辆的转向角和加速度,使得车辆能够沿着预定的轨迹行驶。MPC控制器通过预测车辆未来的状态和输出,可以提前做出调整,以应对道路上的各种突发情况,如障碍物、行人等。

4. MPC控制的优点

MPC控制具有以下优点:

  • **预测性:**MPC控制器可以预测未来的系统状态和输出,并提前做出调整,以应对各种突发情况。

  • **鲁棒性:**MPC控制器对系统参数的不确定性和干扰具有较强的鲁棒性。

  • **易于实现:**MPC控制器易于实现,并且可以与其他控制算法相结合。

5. MPC控制的缺点

MPC控制也存在一些缺点:

  • **计算量大:**MPC控制器需要进行大量的计算,这可能会导致控制延迟。

  • **对模型的依赖性:**MPC控制器的性能依赖于系统的数学模型,如果模型不准确,则MPC控制器的性能也会受到影响。

📣 部分代码

% 参考轨迹生成N=100;   %参考轨迹点数量T=0.05;  %采样周期Xout=zeros(N,3);    %N行3列矩阵Tout=zeros(N,1);    %N行1列矩阵for k=1:1:N    Xout(k,1)=k*T;    Xout(k,2)=2;    Xout(k,3)=0;    Tout(k,1)=(k-1)*T;end% 第二部分%仿真系统基本情况介绍Nx=3;    %状态量个数Nu=2;    %控制量个数[Nr,Nc]=size(Xout);  %返回Xout的行数和列数Tsim=20;   %仿真时间X0=[0 0 pi/3];  %车辆初始状态L=1;           %车辆轴距vd1=1;         %参考系统的纵向速度vd2=0;         %参考系统的前轮偏角

⛳️ 运行结果

6. 总结

MPC控制是一种先进的控制算法,它具有预测性、鲁棒性和易于实现等优点。MPC控制在无人驾驶车辆的轨迹跟踪中有着广泛的应用。然而,MPC控制也存在一些缺点,如计算量大、对模型的依赖性等。

🔗 参考文献

[1]孙银健.基于模型预测控制的无人驾驶车辆轨迹跟踪控制算法研究[D].北京理工大学,2015.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值