✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 概述
模型预测控制(MPC)是一种先进的控制算法,它通过预测未来的系统状态和输出,来计算当前的控制输入。MPC在许多领域都有着广泛的应用,包括无人驾驶车辆的轨迹跟踪。
2. MPC控制原理
MPC控制的基本原理是,首先建立一个系统的数学模型,然后使用该模型来预测未来的系统状态和输出。接下来,MPC控制器会计算出一系列控制输入,使得系统在未来一段时间内的状态和输出能够满足预定的目标。
3. MPC控制在无人驾驶车辆轨迹跟踪中的应用
在无人驾驶车辆的轨迹跟踪中,MPC控制器可以用来计算出车辆的转向角和加速度,使得车辆能够沿着预定的轨迹行驶。MPC控制器通过预测车辆未来的状态和输出,可以提前做出调整,以应对道路上的各种突发情况,如障碍物、行人等。
4. MPC控制的优点
MPC控制具有以下优点:
-
**预测性:**MPC控制器可以预测未来的系统状态和输出,并提前做出调整,以应对各种突发情况。
-
**鲁棒性:**MPC控制器对系统参数的不确定性和干扰具有较强的鲁棒性。
-
**易于实现:**MPC控制器易于实现,并且可以与其他控制算法相结合。
5. MPC控制的缺点
MPC控制也存在一些缺点:
-
**计算量大:**MPC控制器需要进行大量的计算,这可能会导致控制延迟。
-
**对模型的依赖性:**MPC控制器的性能依赖于系统的数学模型,如果模型不准确,则MPC控制器的性能也会受到影响。
📣 部分代码
% 参考轨迹生成
N=100; %参考轨迹点数量
T=0.05; %采样周期
Xout=zeros(N,3); %N行3列矩阵
Tout=zeros(N,1); %N行1列矩阵
for k=1:1:N
Xout(k,1)=k*T;
Xout(k,2)=2;
Xout(k,3)=0;
Tout(k,1)=(k-1)*T;
end
% 第二部分
%仿真系统基本情况介绍
Nx=3; %状态量个数
Nu=2; %控制量个数
[Nr,Nc]=size(Xout); %返回Xout的行数和列数
Tsim=20; %仿真时间
X0=[0 0 pi/3]; %车辆初始状态
L=1; %车辆轴距
vd1=1; %参考系统的纵向速度
vd2=0; %参考系统的前轮偏角
⛳️ 运行结果
6. 总结
MPC控制是一种先进的控制算法,它具有预测性、鲁棒性和易于实现等优点。MPC控制在无人驾驶车辆的轨迹跟踪中有着广泛的应用。然而,MPC控制也存在一些缺点,如计算量大、对模型的依赖性等。
🔗 参考文献
[1]孙银健.基于模型预测控制的无人驾驶车辆轨迹跟踪控制算法研究[D].北京理工大学,2015.