基于光谱复用观测的高光谱定量相位成像演示附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要

我们演示了一种基于光谱复用观测的高光谱定量相位成像方法。该方法利用光谱复用技术,将不同波长的光线复用到同一光纤中,并通过干涉仪对复用光进行干涉。通过分析干涉信号,我们可以获得样品的相位信息。该方法具有高灵敏度、高分辨率和高速度等优点,适用于各种样品的相位成像。

介绍

相位成像是一种重要的光学成像技术,它可以提供样品的相位信息,从而揭示样品的微观结构和表面形貌。相位成像技术在生物医学、材料科学、纳米技术等领域有着广泛的应用。

传统的光谱复用技术通常用于通信领域,它可以将多个波长的光线复用到同一光纤中,从而提高光纤的传输容量。近年来,光谱复用技术也被应用于光学成像领域。通过将不同波长的光线复用到同一光纤中,我们可以获得样品的相位信息。

方法

我们的方法如图 1 所示。光源发出的光线首先通过一个分束器分成两束。一束光线作为参考光,另一束光线作为样品光。样品光通过样品后,与参考光在干涉仪中干涉。干涉信号通过光电探测器检测,并由计算机进行分析。

图 1. 基于光谱复用观测的高光谱定量相位成像方法示意图

为了提高相位成像的灵敏度和分辨率,我们采用了光谱复用技术。光谱复用技术可以将不同波长的光线复用到同一光纤中,从而提高光纤的传输容量。通过将不同波长的光线复用到同一光纤中,我们可以获得样品的相位信息。

📣 部分代码

function sigma_hat=function_stdEst(z,kernel_type,est_type,which_dims)%Software for Rician noise removal via variance stabilization% Estimate noise standard deviation (AWGN model) from data of arbitrary dimensionality.% --------------------------------------------------------------------------------------%% SYNTAX% ------% sigma_hat = function_stdEst ( z , kernel_type , est_type , which_dims )%%% OUTPUT% ------% sigma_hat    :  estimated noise standard deviation%%% INPUTS% ------% z            :  noisy observation (n-dimensional, n arbitrary)%% kernel_type  :  1-dimensional kernel used for separable n-dimensional convolution%%   kernel_type=1           Haar%   kernel_type=2           Daubechies length 6    (DEFAULT)%   kernel_type=3           Laplacian (spline of length 3)%   kernel_type=4           Farras Abdelnour & Ivan Selesnick (ICASSP2001)%   kernel_type=[T N]       iterate N times the kernel of type T=1,2,3,4%   kernel_type=[vector]    user-specified kernel given by vector of length>2%%% est_type     :  sample estimator of the standard deviation%%   est_type=1             median of absolute deviations  (DEFAULT)%   est_type=2             mean of absolute deviations%   est_type=3             sample standard deviation%%% which_dims   :  dimensions of z along which st.sigma_hat. estimation is performed%                 (DEFAULT: all dimensions)%%%% classical examples:%%   kernel_type=2, est_type=1  Donoho's MAD      (DEFAULT)%                              sigma_hat = function_stdEst(z);%%   kernel_type=3, est_type=2  Immerkaer's algorithm%%%%% Alessandro Foi - Tampere University of Technology - 2011% -----------------------------------------------------------------------if ~exist('kernel_type','var')    kernel_type=2;endif ~exist('est_type','var')    est_type=1;endif kernel_type(1)==1  %%% Haar    kernel=[-1;1];elseif kernel_type(1)==2  %%% Daubechies length 6    kernel=[-0.33267055295008 ;  0.80689150931109 ; -0.45987750211849 ; -0.13501102001025 ; 0.08544127388203  ; 0.03522629188571];elseif kernel_type(1)==3    %%% Laplacian    kernel=[1; -2; 1];elseif kernel_type(1)==4    %%% Farras Abdelnour & Ivan Selesnick    kernel=[-0.011226792152540; 0.011226792152540; 0.088388347648320; 0.088388347648320; -0.695879989034000; 0.695879989034000; -0.088388347648320; -0.088388347648320; 0; 0];endif numel(kernel_type)==2    kernelb=kernel;    for conv_counter=1:kernel_type(2)        kernel=conv2(kernel,kernelb);    endelseif numel(kernel_type)>2    kernel=reshape(kernel_type,[numel(kernel_type) 1]);end% make kernel zero-meankernel=kernel-mean(kernel(:));% normalize ell2kernel=kernel/sqrt(sum(kernel(:).^2));if ~exist('which_dims','var')which_dims=find(size(z)>1);endfor jj=which_dims    z=convn(z,permute(kernel,circshift((1:max(2,jj)),[0 jj-1])),'valid');endif est_type==1        %%% median of absolute deviations      sigma_hat=median(abs(z(:)))/0.674489750196082;   %  assumes, for simplicity, that median(z(:))=0.elseif est_type==-1   %%% median of absolute deviations      sigma_hat=median(abs(z(:)-median(z(:))))/0.674489750196082;  % 0.674489750196082=icdf('normal',3/4,0,1) elseif est_type==2    %%% mean of absolute deviations      sigma_hat=mean(abs(z(:)))*sqrt(pi/2);   %  assumes, for simplicity, that mean(z(:))=0.elseif est_type==-2    %%% mean of absolute deviations      sigma_hat=mean(abs(z(:)-mean(z(:))))*sqrt(pi/2);elseif est_type==3     %%% sample standard deviation    sigma_hat=sqrt(mean(abs(z(:)).^2));    %  assumes, for simplicity, that mean(z(:))=0.elseif est_type==-3    %%% sample standard deviation    sigma_hat=sqrt(mean(abs(z(:)-mean(z(:))).^2));end

⛳️ 运行结果

我们演示了一种基于光谱复用观测的高光谱定量相位成像方法。该方法具有高灵敏度、高分辨率和高速度等优点,适用于各种样品的相位成像。该方法在生物医学、材料科学、纳米技术等领域有着广泛的应用前景。

🔗 参考文献

[1] 赵慧洁,张晓元,贾国瑞,等.运动补偿下双通道星载高光谱成像仪图像配准[J].红外与激光工程, 2021.DOI:10.3788/IRLA20211022.

[2] 李杨,饶长辉,王胜千.基于高光谱图像的光学多孔径成像系统平移误差测量方法:CN202011247068.1[P].CN112432768A[2024-01-29].

[3] Zongze Yuan,袁宗泽,Hao Sun,等.基于数字微镜阵列的高光谱压缩成像方法研究[C]//高分辨率对地观测学术年会.中国宇航学会;中科院电子学研究所, 2013.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值