✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
热传导树状网络结构在生物系统和工程应用中具有广泛的应用。本文提出了一种基于元胞自动机的热传导树状网络结构生成方法。该方法利用元胞自动机的局部规则,模拟热传导过程,生成具有特定拓扑结构和热传导特性的树状网络。
1. 引言
树状网络结构在自然界和工程应用中无处不在,例如血管系统、神经网络和微流体系统。这些网络结构具有高效的热传导特性,能够快速地传递热量。因此,生成具有特定拓扑结构和热传导特性的树状网络结构对于优化热管理系统具有重要意义。
传统的树状网络结构生成方法通常依赖于随机生成或人工设计。然而,这些方法难以生成具有复杂拓扑结构和特定热传导特性的网络。元胞自动机是一种基于局部规则的计算模型,能够模拟复杂的动态系统。因此,本文提出了一种基于元胞自动机的热传导树状网络结构生成方法。
2. 元胞自动机模型
元胞自动机是一个由离散单元(元胞)组成的网格。每个元胞具有一个状态,并且根据与相邻元胞的状态之间的局部规则更新其状态。本文中,我们使用元胞自动机模拟热传导过程。
元胞的状态表示元胞的温度。热传导过程通过以下规则模拟:
-
如果一个元胞的温度高于其相邻元胞,则热量会从该元胞传递到相邻元胞。
-
传递的热量与温度差成正比。
-
传递的热量也会导致相邻元胞的温度升高。
3. 树状网络结构生成
我们利用元胞自动机的热传导模拟来生成树状网络结构。具体步骤如下:
-
初始化元胞自动机网格,并随机设置元胞的温度。
-
运行元胞自动机,模拟热传导过程。
-
随着热传导过程的进行,元胞的温度会趋于稳定。
-
识别温度较高的元胞,这些元胞形成树状网络的骨架。
-
根据骨架,生成具有特定拓扑结构的树状网络。
📣 部分代码
function t_max_final = automate_cell_direct(obj,cond_haute,taux_remplissage,start_image)
rng('shuffle', 'twister')
%*****************Automate cellulaire*********************INPG/BOICHOT/2008
%****Conductivit?des drains thermiques W/m.K******************************
% cond_haute = 10;
cond_basse = 1;
temp_puits = 300;
pas_x = 0.001;
p_vol=1e5;
taux_variac = 0.5;
% taux_remplissage=0.3;
%****Image ?traiter comme configuration initiale**************************
condi_limites_1=imread(start_image);
disp('Reading bitmap image...')
%****R閏up閞ation du format de l'image*************************************
[hauteur,largeur,profondeur]=size(condi_limites_1);
nombre_images = max([hauteur,largeur]);
condi_limites = zeros(hauteur,largeur);
condi_temp = zeros(hauteur,largeur);
f_temp=zeros(nombre_images);
f_iter=1:1:nombre_images;
%****Assignation des conditions aux limites en fonction de la couleur des
%pixels de l'image*********************************************************
pixels_blancs=0;
pixels_noirs=0;
for k = 1:1:hauteur;
for l = 1:1:largeur;
rouge = condi_limites_1(k,l,1);
vert = condi_limites_1(k,l,2);
bleu = condi_limites_1(k,l,3);
if (rouge == 255) && (vert == 255) && (bleu == 255);
choix = cond_basse;
pixels_blancs=pixels_blancs+1;
end;
if (rouge == 127) && (vert == 127) && (bleu == 127);
choix = -2;
end;
if (rouge == 0) && (vert == 0) && (bleu == 255);
choix = -3;
end;
if (rouge == 0) && (vert == 0) && (bleu == 0);
choix = cond_haute;
pixels_noirs=pixels_noirs+1;
end;
condi_limites(k, l) = choix;
end;
end;
nombre_pixels_conducteurs=ceil(pixels_blancs*taux_remplissage);
condi_limites=init_image(condi_limites,nombre_pixels_conducteurs, cond_basse, cond_haute);
disp('Converting bitmap image to surface conditions...');
%****Pr?allocation de la taille des matrices utilis閑s dans les boucles***
temp=ones(hauteur,largeur).*temp_puits;
condu_tab=zeros(hauteur,largeur,4);
new_pos_in=zeros(hauteur,largeur);
new_pos_out=zeros(hauteur,largeur);
new_pos2=zeros(hauteur,largeur);
gradients=zeros(hauteur,largeur);
note=zeros(hauteur,largeur);
condi_limites_2=condi_limites_1;
affichage=zeros(1,4);
%disp('entr閑 des conditions initiales termin閑.............................');
for m=1:1:nombre_images;
tic
disp(['-------------------------------------------------------'])
disp('Applying the Cellular Automaton...');
%************************************************************D閎ut de l'automate cellulaire
%boucle interne
%************Calcul de temp_max, temp_min, grad_max,grad_min*****
[somme_entropie, entropie, border_variance,variance, moyenne_temp,t_max_sortie(m),temp,grad, variance_grad]=finite_temp_direct_sparse(cond_haute,cond_basse,temp_puits,pas_x,p_vol,condi_limites);
gradients=zeros(hauteur,largeur);
gradients(2:hauteur-1,2:largeur-1)=grad;
grad_max = max(max(gradients));
grad_min = min(min(gradients));
temp_max = max(max(temp));
temp_min = min(min(temp));
gradients=(gradients-grad_min)/(grad_max-grad_min);
temp=(temp-temp_min)/(temp_max-temp_min);
note=gradients*(1-obj)+temp*(obj);
[condi_limites] = cellular_automaton(condi_limites,note, cond_haute,cond_basse,nombre_pixels_conducteurs,taux_variac,nombre_images,m);
disp('Calculating the temperature map...');
[somme_entropie, entropie, border_variance,variance, moyenne_temp,t_max,temp,grad, variance_grad]=finite_temp_direct_sparse(cond_haute,cond_basse,temp_puits,pas_x,p_vol,condi_limites);
%****cr殚 une image de sortie compatible avec l'image d'entr閑*************
for k = 1:1:hauteur;
for l = 1:1:largeur;
choix = condi_limites(k, l) ;
if choix == cond_basse;
rouge = 255;
vert = 255;
bleu = 255;
end;
if choix == -2;
rouge = 127;
vert = 127 ;
bleu = 127 ;
end;
if choix == -3;
rouge = 0;
vert = 0 ;
bleu = 255;
end;
if choix == cond_haute;
rouge = 0 ;
vert = 0 ;
bleu = 0;
end;
condi_limites_2(k,l,1)=rouge;
condi_limites_2(k,l,2)=vert;
condi_limites_2(k,l,3)=bleu;
end;
end;
condi_limites_2=uint8(condi_limites_2);
% nom_sortie = ['sortie',num2str(m),'.bmp'];
miroir=fliplr(condi_limites_2(1:hauteur,1:largeur-1,:));
miroir2=fliplr(miroir);
imwrite([miroir2,miroir],['Output_kp_ko_',num2str(cond_haute),'_phi_',num2str(taux_remplissage),'.png']);
imwrite([miroir2,miroir],['Topology/sortie_kp_ko_',num2str(cond_haute),'_phi_',num2str(taux_remplissage),'_',num2str(m,'%06.f'),'.png']);
figure(1)
colormap jet
subplot(2,4,1:2);
if m>1;
res(m-1)=(t_max_sortie(m-1)-t_max_sortie(m))/(t_max_sortie(1)-t_max_sortie(2));
semilogy(abs(res),'.r');
title('Residuals');
end
subplot(2,4,3:4);
imagesc([miroir2,miroir]);
title('Topology');
subplot(2,4,5);
plot(variance,'.m');
imagesc(log10(entropie(2:end-1,2:end-1)));
title('Log10 Entropy');
subplot(2,4,6);
imagesc(temp);
title('Temperature');
subplot(2,4,7);
imagesc(log10(gradients));
title('Log10 Thermal gradients');
subplot(2,4,8);
imagesc(log10(note));
title('Log10 Objective function');
disp(['Maximum temperature: ',num2str(t_max_sortie(m))])
disp(['End of epoch: ',num2str(m)])
disp(['-------------------------------------------------------'])
saveas(gcf,['Figure_kp_ko_',num2str(cond_haute),'_phi_',num2str(taux_remplissage),'.png']);
saveas(gcf,['Figure/figure_kp_ko_',num2str(cond_haute),'_phi_',num2str(taux_remplissage),'_',num2str(m,'%06.f'),'.png']);
toc
% figure(2)
% plot(index_de_m,'bd');
end;
t_max_final=max(max(temp));
disp('End of convergence !');
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类