✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
该存储库包含执行太赫兹频谱中波束形成仿真的 MATLAB 脚本(和动态脚本)。本质上,这里采用的方法是角谱法(ASM),它通过对波进行傅里叶变换并传播每个单独频率的成分来传播波。
简介
太赫兹波束形成是操纵太赫兹波以形成特定方向和形状的波束的过程。这在各种应用中至关重要,例如成像、通信和传感。
角谱法
角谱法是一种波传播的数值方法,它将波表示为其角谱的叠加。角谱是波在空间频率域中的表示。通过对波进行傅里叶变换,可以获得其角谱。
一旦获得角谱,就可以通过传播每个频率分量的平面波来传播波。平面波是沿特定方向传播的单一频率波。通过将所有传播的平面波相加,可以获得传播后的波。
太赫兹波束形成仿真
该存储库中的脚本使用角谱法执行太赫兹波束形成仿真。仿真过程如下:
-
**生成太赫兹源:**首先,生成一个太赫兹源,它可以是点源、线源或面源。
-
**计算角谱:**接下来,对太赫兹源进行傅里叶变换以计算其角谱。
-
**传播角谱:**角谱随后通过自由空间或其他介质传播。传播距离和介质特性会影响角谱的演化。
-
**反傅里叶变换:**最后,对传播后的角谱进行反傅里叶变换以获得传播后的太赫兹波。
应用
该仿真可用于各种应用,包括:
-
**波束成形优化:**优化太赫兹波束形成器的设计以产生所需的波束模式。
-
**成像:**使用太赫兹波束形成器进行成像,例如透射成像和反射成像。
-
**通信:**设计太赫兹通信系统,例如定向天线和波束引导。
结论
该存储库中的 MATLAB 脚本提供了一种强大且灵活的方法来执行太赫兹波束形成仿真。基于角谱法的仿真方法可以准确地模拟波的传播,并可用于各种应用。
📣 部分代码
close all;
% add path to find function scripts
addpath('./Functions');
lambda = 1e-3;
k0 = 2*pi/lambda;
L = 50e-3;
M = 512;
dx = L/M;
z = 20e-3;
x = dx*(-M/2:M/2-1);
y = dx*(-M/2:M/2-1);
[X, Y] = meshgrid(x, y);
angle_offset = 30;
offset = z*tand(angle_offset);
u0 = exp(1i*k0*sqrt(X.^2+(Y+offset).^2+z^2));
u0(abs(y) > 6e-3, :) = 0;
u0(:, abs(x)>6e-3) = 0;
u1 = propTF(u0, L, lambda, z);
figure;
subplot(121);
imagesc(x./1e-3, y./1e-3, angle(u0));
% xlim([-6.5 6.5]);
% ylim([-6.5 6.5]);
title("Antenna Plane");
xlabel("mm");
ylabel("mm");
colorbar;
axis square;
colormap jet;
subplot(122);
imagesc(x./1e-3, y./1e-3, abs(u1)/max(max(abs(u1))));
% xlim([-6.5 6.5]);
% ylim([-18.5 -5.5]);
title("Focal Plane");
xlabel("mm");
ylabel("mm");
colorbar;
colormap jet;
axis square;
⛳️ 运行结果
🔗 参考文献
[1] 黄小桔.基于超表面的太赫兹宽场聚焦平面透镜研究[D].重庆大学,2021.
[2] 阮德圣.基于超振荡技术的太赫兹超衍射聚焦平面透镜研究[D].重庆大学,2019.
[3] 姜骥,付强,朱效立,等.基于角谱法的振幅型光子筛的设计和分析[J].光子学报, 2008, 37(9):5.DOI:CNKI:SUN:GZXB.0.2008-09-008.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类