✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文提出了一种新的回归预测模型,即基于注意力机制的双向时间卷积神经网络结合双向门控单元(BiTCN-BiGRU-Attention)。该模型将双向时间卷积神经网络(BiTCN)与双向门控单元(BiGRU)相结合,并引入注意力机制,以提高时间序列数据的回归预测精度。BiTCN 能够提取时间序列数据的局部特征,而 BiGRU 能够捕捉长期依赖关系。注意力机制则允许模型关注时间序列中与预测目标相关的关键特征。实验结果表明,所提出的 BiTCN-BiGRU-Attention 模型在多个数据集上的回归预测任务中取得了优异的性能。
引言
时间序列预测在许多领域都有着广泛的应用,例如金融预测、天气预报和医疗诊断。传统的时间序列预测模型,如自回归集成移动平均(ARIMA)和支持向量机(SVM),在处理复杂的时间序列数据时往往表现不佳。近年来,基于深度学习的时间序列预测模型得到了广泛的研究,并取得了显著的成果。
BiTCN-BiGRU-Attention 模型
所提出的 BiTCN-BiGRU-Attention 模型由以下三个主要部分组成:
-
**双向时间卷积神经网络(BiTCN):**BiTCN 由多个一维卷积层组成,每个卷积层都使用一组卷积核对时间序列数据进行卷积操作。卷积操作能够提取时间序列数据的局部特征。
-
**双向门控单元(BiGRU):**BiGRU 由多个门控循环单元(GRU)组成,其中每个 GRU 都包含一个更新门和一个重置门。更新门控制着信息在时间序列中的流动,而重置门则控制着前一时刻的信息对当前时刻的影响。BiGRU 能够捕捉时间序列中的长期依赖关系。
-
**注意力机制:**注意力机制由一个查询向量、一个键向量和一个值向量组成。查询向量表示预测目标,键向量表示时间序列数据,值向量表示时间序列数据中与预测目标相关的特征。注意力机制通过计算查询向量与键向量的相似性,来确定值向量中哪些特征与预测目标相关。
模型训练
BiTCN-BiGRU-Attention 模型的训练过程如下:
-
将时间序列数据输入到 BiTCN 中,提取局部特征。
-
将 BiTCN 的输出输入到 BiGRU 中,捕捉长期依赖关系。
-
计算注意力权重,确定与预测目标相关的特征。
-
将注意力权重与 BiGRU 的输出相乘,得到与预测目标相关的特征表示。
-
将特征表示输入到全连接层,进行回归预测。
实验结果
为了评估 BiTCN-BiGRU-Attention 模型的性能,我们在多个数据集上进行了实验。数据集包括金融时间序列、天气时间序列和医疗时间序列。实验结果表明,BiTCN-BiGRU-Attention 模型在所有数据集上都取得了优异的回归预测精度。
结论
本文提出了一种基于注意力机制的双向时间卷积神经网络结合双向门控单元(BiTCN-BiGRU-Attention)的回归预测模型。该模型将 BiTCN 与 BiGRU 相结合,并引入注意力机制,以提高时间序列数据的回归预测精度。实验结果表明,BiTCN-BiGRU-Attention 模型在多个数据集上的回归预测任务中取得了优异的性能。该模型可以应用于各种时间序列预测任务,例如金融预测、天气预报和医疗诊断。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 冯贤洋.基于物联网和CNN--BiGRU--AM神经网络齿轮箱关键零部件故障诊断[D].重庆大学,2020.
[2] 邓志平,王冬霞,马晓冬,et al.基于注意力机制的NewVGG16-BiGRU鼾声分类[J].计算机应用, 2023, 43(S01):276-280.DOI:10.11772/j.issn.1001-9081.2022101497.
[3] 刘婕,王娆芬,邓源.基于心电信号的自注意力双向门控循环网络疲劳检测模型[J].中国医学物理学杂志, 2022(005):039.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类