多元预测|BiTCN-BiGRU-Attention注意力机制的双向时间卷积神经网络结合双向门控单元预测Matlab代码,Excel导入,直接运行

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

本文提出了一种新的回归预测模型,即基于注意力机制的双向时间卷积神经网络结合双向门控单元(BiTCN-BiGRU-Attention)。该模型将双向时间卷积神经网络(BiTCN)与双向门控单元(BiGRU)相结合,并引入注意力机制,以提高时间序列数据的回归预测精度。BiTCN 能够提取时间序列数据的局部特征,而 BiGRU 能够捕捉长期依赖关系。注意力机制则允许模型关注时间序列中与预测目标相关的关键特征。实验结果表明,所提出的 BiTCN-BiGRU-Attention 模型在多个数据集上的回归预测任务中取得了优异的性能。

引言

时间序列预测在许多领域都有着广泛的应用,例如金融预测、天气预报和医疗诊断。传统的时间序列预测模型,如自回归集成移动平均(ARIMA)和支持向量机(SVM),在处理复杂的时间序列数据时往往表现不佳。近年来,基于深度学习的时间序列预测模型得到了广泛的研究,并取得了显著的成果。

BiTCN-BiGRU-Attention 模型

所提出的 BiTCN-BiGRU-Attention 模型由以下三个主要部分组成:

  • **双向时间卷积神经网络(BiTCN):**BiTCN 由多个一维卷积层组成,每个卷积层都使用一组卷积核对时间序列数据进行卷积操作。卷积操作能够提取时间序列数据的局部特征。

  • **双向门控单元(BiGRU):**BiGRU 由多个门控循环单元(GRU)组成,其中每个 GRU 都包含一个更新门和一个重置门。更新门控制着信息在时间序列中的流动,而重置门则控制着前一时刻的信息对当前时刻的影响。BiGRU 能够捕捉时间序列中的长期依赖关系。

  • **注意力机制:**注意力机制由一个查询向量、一个键向量和一个值向量组成。查询向量表示预测目标,键向量表示时间序列数据,值向量表示时间序列数据中与预测目标相关的特征。注意力机制通过计算查询向量与键向量的相似性,来确定值向量中哪些特征与预测目标相关。

模型训练

BiTCN-BiGRU-Attention 模型的训练过程如下:

  1. 将时间序列数据输入到 BiTCN 中,提取局部特征。

  2. 将 BiTCN 的输出输入到 BiGRU 中,捕捉长期依赖关系。

  3. 计算注意力权重,确定与预测目标相关的特征。

  4. 将注意力权重与 BiGRU 的输出相乘,得到与预测目标相关的特征表示。

  5. 将特征表示输入到全连接层,进行回归预测。

实验结果

为了评估 BiTCN-BiGRU-Attention 模型的性能,我们在多个数据集上进行了实验。数据集包括金融时间序列、天气时间序列和医疗时间序列。实验结果表明,BiTCN-BiGRU-Attention 模型在所有数据集上都取得了优异的回归预测精度。

结论

本文提出了一种基于注意力机制的双向时间卷积神经网络结合双向门控单元(BiTCN-BiGRU-Attention)的回归预测模型。该模型将 BiTCN 与 BiGRU 相结合,并引入注意力机制,以提高时间序列数据的回归预测精度。实验结果表明,BiTCN-BiGRU-Attention 模型在多个数据集上的回归预测任务中取得了优异的性能。该模型可以应用于各种时间序列预测任务,例如金融预测、天气预报和医疗诊断。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);

⛳️ 运行结果

🔗 参考文献

[1] 冯贤洋.基于物联网和CNN--BiGRU--AM神经网络齿轮箱关键零部件故障诊断[D].重庆大学,2020.

[2] 邓志平,王冬霞,马晓冬,et al.基于注意力机制的NewVGG16-BiGRU鼾声分类[J].计算机应用, 2023, 43(S01):276-280.DOI:10.11772/j.issn.1001-9081.2022101497.

[3] 刘婕,王娆芬,邓源.基于心电信号的自注意力双向门控循环网络疲劳检测模型[J].中国医学物理学杂志, 2022(005):039.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值