DBN深度置信/信念网络的数据分类预测/故障识别算法MATLAB代码

本文介绍了一种基于深度置信网络(DBN)的变压器故障诊断方法,通过预处理、模型构建、训练和诊断步骤,从运行数据中提取高级特征,显著提高了故障诊断的准确性,实验结果验证了其有效性。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

变压器是电力系统中至关重要的设备,其故障会造成严重后果。因此,对变压器故障进行准确诊断至关重要。本文提出了一种基于深度置信网络(DBN)的变压器故障诊断方法。DBN是一种深度学习模型,具有强大的特征提取能力。通过使用DBN,可以从变压器运行数据中提取高层特征,从而提高故障诊断的准确性。

引言

变压器故障诊断是电力系统维护中的一个重要课题。传统的变压器故障诊断方法主要基于人工经验和统计分析,存在准确性低、鲁棒性差等问题。近年来,随着深度学习技术的兴起,基于深度学习的变压器故障诊断方法得到了广泛的研究。

方法

本文提出的基于DBN的变压器故障诊断方法主要包括以下步骤:

  1. **数据预处理:**对变压器运行数据进行预处理,包括数据归一化、去噪和特征提取。

  2. **DBN模型构建:**构建DBN模型,包括多层受限玻尔兹曼机(RBM)和一层softmax回归层。

  3. **模型训练:**使用变压器运行数据训练DBN模型,使模型能够从数据中学习故障特征。

  4. **故障诊断:**将新的变压器运行数据输入训练好的DBN模型,通过softmax回归层输出故障类别。

实验

为了验证本文提出的方法的有效性,进行了实验。实验数据来自变压器故障诊断数据集。实验结果表明,本文提出的方法在变压器故障诊断任务上取得了较高的准确性,优于传统的故障诊断方法。

结论

本文提出了一种基于DBN的变压器故障诊断方法。该方法利用了DBN强大的特征提取能力,从变压器运行数据中提取高层特征,从而提高了故障诊断的准确性。实验结果验证了该方法的有效性,为变压器故障诊断提供了一种新的思路。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);

⛳️ 运行结果

🔗 参考文献

[1] 李泽东,李志农,陶俊勇,等.基于全矢谱-深度置信网络的转子故障诊断方法研究[J].兵器装备工程学报, 2022(043-001).

[2] 范松海,张葛祥,刘益岑,等.一种基于Dropout深度置信网络的变压器故障诊断方法:CN202010400931.6[P].CN111539486A[2024-03-03].

[3] 马航宇,周笛,潘尔顺.基于深度置信网络的旋转部件半监督故障诊断[J].机械设计, 2021(012):038.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值