✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
变压器是电力系统中至关重要的设备,其故障会造成严重后果。因此,对变压器故障进行准确诊断至关重要。本文提出了一种基于深度置信网络(DBN)的变压器故障诊断方法。DBN是一种深度学习模型,具有强大的特征提取能力。通过使用DBN,可以从变压器运行数据中提取高层特征,从而提高故障诊断的准确性。
引言
变压器故障诊断是电力系统维护中的一个重要课题。传统的变压器故障诊断方法主要基于人工经验和统计分析,存在准确性低、鲁棒性差等问题。近年来,随着深度学习技术的兴起,基于深度学习的变压器故障诊断方法得到了广泛的研究。
方法
本文提出的基于DBN的变压器故障诊断方法主要包括以下步骤:
-
**数据预处理:**对变压器运行数据进行预处理,包括数据归一化、去噪和特征提取。
-
**DBN模型构建:**构建DBN模型,包括多层受限玻尔兹曼机(RBM)和一层softmax回归层。
-
**模型训练:**使用变压器运行数据训练DBN模型,使模型能够从数据中学习故障特征。
-
**故障诊断:**将新的变压器运行数据输入训练好的DBN模型,通过softmax回归层输出故障类别。
实验
为了验证本文提出的方法的有效性,进行了实验。实验数据来自变压器故障诊断数据集。实验结果表明,本文提出的方法在变压器故障诊断任务上取得了较高的准确性,优于传统的故障诊断方法。
结论
本文提出了一种基于DBN的变压器故障诊断方法。该方法利用了DBN强大的特征提取能力,从变压器运行数据中提取高层特征,从而提高了故障诊断的准确性。实验结果验证了该方法的有效性,为变压器故障诊断提供了一种新的思路。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 李泽东,李志农,陶俊勇,等.基于全矢谱-深度置信网络的转子故障诊断方法研究[J].兵器装备工程学报, 2022(043-001).
[2] 范松海,张葛祥,刘益岑,等.一种基于Dropout深度置信网络的变压器故障诊断方法:CN202010400931.6[P].CN111539486A[2024-03-03].
[3] 马航宇,周笛,潘尔顺.基于深度置信网络的旋转部件半监督故障诊断[J].机械设计, 2021(012):038.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类