✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
单摆运动是一种经典的物理现象,它描述了一个悬挂在固定点上的物体在重力作用下摆动的运动。单摆运动在许多领域都有应用,包括时钟、地震仪和陀螺仪。
单摆的运动方程
单摆的运动方程可以从牛顿运动定律推导出来。对于一个小角度摆动,单摆的运动方程为
θ'' + (g/L)θ = 0
其中:
-
θ是摆角,以弧度为单位
-
g是重力加速度,以m/s²为单位
-
L是摆线长度,以m为单位
单摆的周期和频率
单摆的周期是指摆动一次所需的时间,频率是指摆动每秒的次数。对于小角度摆动,单摆的周期和频率为:
T = 2π√(L/g)
f = 1/T
单摆的能量
单摆在摆动过程中具有势能和动能。摆角最大时,单摆具有最大的势能,摆角为零时,单摆具有最大的动能。单摆的总能量为:
E = mgh(1 - cosθ)
其中:
-
m是摆球的质量,以kg为单位
-
h是摆球的摆动高度,以m为单位
单摆的阻尼
在实际应用中,单摆运动会受到阻尼力的影响,阻尼力会使单摆的摆动逐渐减小。阻尼力的大小与摆动速度成正比。
单摆的应用
单摆运动在许多领域都有应用,包括:
-
**时钟:**单摆时钟利用单摆的周期性摆动来计时。
-
**地震仪:**地震仪利用单摆的惯性来检测地震波。
-
**陀螺仪:**陀螺仪利用单摆的角动量来保持方向。
结论
单摆运动是一种重要的物理现象,它在许多领域都有应用。了解单摆运动的原理对于理解这些应用至关重要。领域中继续发挥着重要的作用。
📣 部分代码
%% 单摆运动仿真
% 求解:1.单摆周期与角振幅之间关系
% 2.演示单摆振动
% 单摆系统参数
% 已知:单摆的摆锤质量m,角位置theta,摆杆长L
% 小角度振动时,单摆周期与角振幅无关,具有等时性,周期为T0;大角度时周期受角振幅影响,为T
% 这里简化分析起见,这里计算出T_dot=T/T0,T_dot是约化周期,其中T0=2*pi*sqrt(L/g),则有小角度振动T_dot≈1.
% 通过T_dot=T/T0的计算,可以观察出多大角度下单摆的周期会产生收角振幅的影响
% 假设:摆杆无质量,摆球为质点
% 建立坐标系:摆杆铰接点为原点,水平向右为x轴正向,竖直向上为y轴正向,
% 单摆的角位置为摆杆与竖直向下方向的夹角,单摆在右时角位置为正,在左时角位置为负
% 并设单摆逆时针旋转时为旋转正方向
% 单摆振动的周期和运动规律由摆锤的运动方程得出,详细解析见以下网页:
Judge = input('是否打开单摆运动规律的网页讲解,1--打开,0--跳过: ');
if Judge == 1
url = 'https://wenku.baidu.com/view/29ec28ee81c758f5f61f6738.html';
web(url)
end
%% 1.单摆的周期与振幅的关系
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类