✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
高强度聚焦超声(HIFU)是一种非侵入性治疗技术,利用超声波能量聚焦于目标组织,产生热效应,从而达到治疗目的。HIFU治疗的温度场分布对于治疗效果至关重要,因此了解其二维分布情况具有重要意义。
HIFU治疗原理
HIFU治疗通过聚焦超声波能量,在目标组织中产生局部高温,从而破坏病变组织。超声波在组织中传播时,由于吸收和散射,其能量逐渐衰减。当超声波聚焦于目标组织时,能量密度达到最高,产生热效应。
温度场分布的影响因素
HIFU治疗的温度场分布受多种因素影响,包括:
-
**超声波频率:**频率越低,穿透力越强,但能量衰减也越快。
-
**超声波强度:**强度越高,产生的热效应越强。
-
**治疗时间:**治疗时间越长,温度升高越多。
-
**组织类型:**不同组织的声学特性不同,影响超声波的传播和吸收。
-
**治疗头设计:**治疗头形状和聚焦方式影响超声波的能量分布。
二维温度场分布测量方法
测量HIFU治疗的二维温度场分布可以使用以下方法:
-
**热电偶:**将热电偶植入组织中,直接测量温度。
-
**红外热像仪:**通过红外辐射检测组织表面的温度。
-
**声学显微镜:**利用超声波成像技术,重建组织内部的温度分布。
温度场分布的临床意义
HIFU治疗的温度场分布对于临床治疗具有重要意义:
-
**治疗效果:**温度场分布影响治疗效果,适宜的温度范围可以有效破坏病变组织,而过高或过低的温度可能导致组织损伤或治疗失败。
-
**安全性:**温度场分布可以帮助医生评估治疗的安全性,避免对周围组织造成损伤。
-
**治疗计划:**了解温度场分布有助于医生制定个性化的治疗计划,优化治疗效果。
结论
HIFU治疗生物组织温度场的二维分布情况对于治疗效果和安全性至关重要。通过了解影响温度场分布的因素和测量方法,医生可以优化治疗计划,提高治疗效果,降低并发症风险。
📣 部分代码
function[] = KZK_radial_plots(r,Ir,H,p5,p0,rho,c,R,a)
% Produces the following plots:
% Heating rate vs. radius at focus
% Intensity vs. radius at focus
% Pressure amplitude of first (up to 5) harmonics vs. radius at focus
R = a*R;
p5 = 1e-6*p0*p5;
figure
axes('FontSize',18)
plot(r,p5,'LineWidth',2)
ylim = get(gca,'YLim');
axis([0,R,ylim(1),ylim(2)])
xlabel('r (cm)')
ylabel('p (MPa)')
grid
Ir = 1e-4*0.5*p0*p0*Ir/rho/c;
figure
axes('FontSize',18)
plot(r,Ir,'LineWidth',2)
ylim = get(gca,'YLim');
axis([0,R,ylim(1),ylim(2)])
xlabel('r (cm)')
ylabel('I (W/cm^2)')
grid
figure
axes('FontSize',18)
plot(r,H,'r','LineWidth',2)
ylim = get(gca,'YLim');
axis([0,R,ylim(1),ylim(2)])
xlabel('r (cm)')
ylabel('H (W/cm^3)')
grid
⛳️ 运行结果
🔗 参考文献
[1]姜晓婷.高强度聚焦超声治疗温度场的数值仿真研究[D].天津医科大学,2007.DOI:10.7666/d.y1127911.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类