【热力学】基于Matlab仿真高强度聚焦超声(HIFU)治疗生物组织温度场的二维分布情况

这篇文章探讨了高强度聚焦超声(HIFU)治疗中,二维温度场分布的重要性及其影响因素,包括超声波频率、强度、治疗时间和组织特性。还介绍了测量方法和温度场分布对治疗效果、安全性和个性化治疗计划的临床意义。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

高强度聚焦超声(HIFU)是一种非侵入性治疗技术,利用超声波能量聚焦于目标组织,产生热效应,从而达到治疗目的。HIFU治疗的温度场分布对于治疗效果至关重要,因此了解其二维分布情况具有重要意义。

HIFU治疗原理

HIFU治疗通过聚焦超声波能量,在目标组织中产生局部高温,从而破坏病变组织。超声波在组织中传播时,由于吸收和散射,其能量逐渐衰减。当超声波聚焦于目标组织时,能量密度达到最高,产生热效应。

温度场分布的影响因素

HIFU治疗的温度场分布受多种因素影响,包括:

  • **超声波频率:**频率越低,穿透力越强,但能量衰减也越快。

  • **超声波强度:**强度越高,产生的热效应越强。

  • **治疗时间:**治疗时间越长,温度升高越多。

  • **组织类型:**不同组织的声学特性不同,影响超声波的传播和吸收。

  • **治疗头设计:**治疗头形状和聚焦方式影响超声波的能量分布。

二维温度场分布测量方法

测量HIFU治疗的二维温度场分布可以使用以下方法:

  • **热电偶:**将热电偶植入组织中,直接测量温度。

  • **红外热像仪:**通过红外辐射检测组织表面的温度。

  • **声学显微镜:**利用超声波成像技术,重建组织内部的温度分布。

温度场分布的临床意义

HIFU治疗的温度场分布对于临床治疗具有重要意义:

  • **治疗效果:**温度场分布影响治疗效果,适宜的温度范围可以有效破坏病变组织,而过高或过低的温度可能导致组织损伤或治疗失败。

  • **安全性:**温度场分布可以帮助医生评估治疗的安全性,避免对周围组织造成损伤。

  • **治疗计划:**了解温度场分布有助于医生制定个性化的治疗计划,优化治疗效果。

结论

HIFU治疗生物组织温度场的二维分布情况对于治疗效果和安全性至关重要。通过了解影响温度场分布的因素和测量方法,医生可以优化治疗计划,提高治疗效果,降低并发症风险。

📣 部分代码

function[] = KZK_radial_plots(r,Ir,H,p5,p0,rho,c,R,a)% Produces the following plots:%  Heating rate vs. radius at focus%  Intensity vs. radius at focus%  Pressure amplitude of first (up to 5) harmonics vs. radius at focusR = a*R;p5 = 1e-6*p0*p5;figureaxes('FontSize',18)plot(r,p5,'LineWidth',2)ylim = get(gca,'YLim');axis([0,R,ylim(1),ylim(2)])xlabel('r (cm)')ylabel('p (MPa)')gridIr = 1e-4*0.5*p0*p0*Ir/rho/c;figureaxes('FontSize',18)plot(r,Ir,'LineWidth',2)ylim = get(gca,'YLim');axis([0,R,ylim(1),ylim(2)])xlabel('r (cm)')ylabel('I (W/cm^2)')gridfigureaxes('FontSize',18)plot(r,H,'r','LineWidth',2)ylim = get(gca,'YLim');axis([0,R,ylim(1),ylim(2)])xlabel('r (cm)')ylabel('H (W/cm^3)')grid

⛳️ 运行结果

🔗 参考文献

[1]姜晓婷.高强度聚焦超声治疗温度场的数值仿真研究[D].天津医科大学,2007.DOI:10.7666/d.y1127911.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值