✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
配电网故障定位是配电网运行维护的重要环节,快速准确地定位故障点对于缩短停电时间、提高供电可靠性具有重要意义。近年来,随着人工智能技术的不断发展,粒子群算法等智能优化算法在配电网故障定位领域得到了广泛应用。本文以33节点配电网为研究对象,采用二进制粒子群算法 (Binary Particle Swarm Optimization, BPSO) 对故障定位问题进行优化求解。
1. 引言
配电网是电力系统的重要组成部分,其故障定位问题一直是电力系统研究的热点之一。传统配电网故障定位方法主要依靠人工经验和继电保护装置,效率低下,且容易受人为因素影响。近年来,随着人工智能技术的不断发展,粒子群算法等智能优化算法在配电网故障定位领域得到了广泛应用。
粒子群算法是一种基于群体智能的优化算法,其基本原理是模拟鸟群觅食的行为,通过群体中个体之间的信息交流和协作,最终找到最优解。二进制粒子群算法是粒子群算法的一种特殊形式,其粒子位置和速度均为二进制值,适用于求解组合优化问题。
2. 二进制粒子群算法
二进制粒子群算法的基本原理与标准粒子群算法相似,但其粒子位置和速度均为二进制值,分别表示故障点是否存在和故障类型。粒子位置和速度的更新公式如下:
3. 基于二进制粒子群算法的配电网故障定位模型
基于二进制粒子群算法的配电网故障定位模型主要包括以下几个步骤:
-
数据采集: 采集配电网各节点的电压、电流等数据,并根据故障类型和故障点位置进行故障模拟。
-
模型建立: 建立配电网故障定位模型,并将二进制粒子群算法应用于模型求解。
-
参数设置: 设置粒子群算法的种群规模、最大迭代次数、惯性权重、学习因子等参数。
-
算法运行: 运行二进制粒子群算法,并根据目标函数值判断算法是否收敛。
-
结果分析: 分析算法的收敛速度、定位精度等性能指标。
4. 仿真实验
为了验证基于二进制粒子群算法的配电网故障定位模型的有效性,本文以33节点配电网为研究对象进行仿真实验。仿真结果表明,该模型能够有效地定位配电网故障点,定位精度较高,收敛速度较快。
5. 结论
本文采用二进制粒子群算法对33节点配电网故障定位问题进行了优化求解,仿真结果表明该模型能够有效地定位配电网故障点,定位精度较高,收敛速度较快。该模型为配电网故障定位提供了一种新的方法,具有较高的应用价值。
⛳️ 运行结果
🔗 参考文献
[1]张敏.配电网中电池储能的多目标优化配置研究[J].[2024-05-02].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类