✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
本文主要研究了GMSK(Gaussian Minimum Shift Keying)调制解调系统,并使用MATLAB软件对其进行仿真。重点关注了相干解调和非相干解调两种方式,并比较了两种解调方式在不同信噪比条件下的性能差异。通过仿真结果,可以观察到相干解调在低信噪比环境下具有更好的误码率性能,而非相干解调则在实现复杂度上具有优势。
1. 引言
GMSK是一种常用的数字调制方式,它结合了MSK(Minimum Shift Keying)的恒包络特性和高斯滤波器的频谱特性,使其具有良好的频谱效率和抗多径衰落性能。在无线通信系统中,GMSK被广泛应用于GSM(Global System for Mobile Communications)等移动通信标准。
GMSK调制解调系统主要分为两类:相干解调和非相干解调。相干解调需要利用接收信号的相位信息来进行解调,其性能优于非相干解调,但实现复杂度更高。非相干解调则不需要接收信号的相位信息,实现较为简单,但性能略逊于相干解调。
2. 系统模型
本仿真系统模型主要包括以下几个部分:
-
信息源: 生成随机二进制数据流。
-
GMSK调制: 将二进制数据流调制为GMSK信号。
-
加性白噪声: 模拟信道中的噪声干扰。
-
解调: 利用相干或非相干解调方式将接收信号恢复为原始数据流。
-
误码率计算: 计算解调后的误码率。
3. 仿真结果及分析
本仿真实验使用MATLAB软件进行,并分别对相干解调和非相干解调两种方式进行仿真。仿真参数设置如下:
-
数据速率:100 kbit/s
-
信号带宽:12 kHz
-
BT(信号带宽与数据速率之比):0.3
-
信噪比范围:0 dB到20 dB
3.1 相干解调
相干解调需要利用接收信号的相位信息来进行解调,其解调过程包括:
-
匹配滤波: 利用与GMSK信号匹配的滤波器对接收信号进行滤波。
-
定时同步: 确定接收信号的采样时刻。
-
相位估计: 估计接收信号的相位。
-
解调: 利用相位信息对接收信号进行解调。
仿真结果表明,相干解调的误码率随着信噪比的增加而迅速下降。在信噪比较低的情况下,相干解调的误码率性能明显优于非相干解调。
3.2 非相干解调
非相干解调不需要利用接收信号的相位信息来进行解调,其解调过程包括:
-
匹配滤波: 利用与GMSK信号匹配的滤波器对接收信号进行滤波。
-
定时同步: 确定接收信号的采样时刻。
-
包络检测: 检测接收信号的包络。
-
解调: 根据包络信息对接收信号进行解调。
仿真结果表明,非相干解调的误码率性能略逊于相干解调,尤其是在信噪比较低的情况下。但由于非相干解调不需要进行相位估计,其实现复杂度较低。
4. 结论
通过仿真实验,我们可以得出以下结论:
-
相干解调在信噪比较低的情况下具有更好的误码率性能,但其实现复杂度较高。
-
非相干解调在实现复杂度上具有优势,但其误码率性能略逊于相干解调。
因此,在实际应用中,需要根据具体的信道条件和系统需求选择合适的解调方式。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类