✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要: 水电作为清洁、可再生的能源,在能源结构中占有重要地位。准确预测水电出力,对于电力系统调度、能源管理以及经济发展至关重要。高斯过程回归 (GPR) 作为一种非参数机器学习方法,在时间序列预测领域表现出色。然而,GPR 的预测精度受其超参数敏感的影响,需要通过优化算法寻优。灰狼算法 (GWO) 作为一种新型的元启发式优化算法,具有全局搜索能力强、收敛速度快等优点。本文提出一种基于灰狼算法优化高斯过程回归的模型 (GWO-GPR),将 GWO 应用于 GPR 超参数优化,以提高水电预测的精度。通过在实际水电数据上的实验,证明了 GWO-GPR 模型在水电预测方面优于传统的 GPR 模型,并具有更高的精度和鲁棒性。
关键词: 水电预测;高斯过程回归;灰狼算法;超参数优化
1. 引言
随着全球能源需求的不断增长,水电作为一种清洁、可再生能源,在能源结构中扮演着越来越重要的角色。水电站的出力预测是电力系统调度、能源管理、电力市场交易等的关键环节,对保障电力供应、提高能源利用效率和促进经济发展具有重要意义。
传统的预测方法,如 ARIMA 模型和神经网络,在水电预测中取得了一定成果。然而,这些方法存在一些局限性,例如对数据线性关系的依赖、对噪声的敏感性和较差的泛化能力等。近年来,高斯过程回归 (GPR) 作为一种非参数机器学习方法,在时间序列预测领域表现出了优异的性能。GPR 能够捕捉数据中的非线性关系,并提供预测结果的不确定性估计,在处理噪声数据和小样本数据方面具有优势。
然而,GPR 的预测精度很大程度上依赖于其超参数的设置。这些超参数决定了高斯过程的协方差函数和噪声水平,对模型的预测性能有重要影响。传统的超参数优化方法,如网格搜索和随机搜索,效率低下,难以找到最优解。为了提高 GPR 的预测精度,需要采用更加高效的优化算法。
灰狼算法 (GWO) 是一种新型的元启发式优化算法,其灵感来源于灰狼群体狩猎的行为。GWO 算法具有全局搜索能力强、收敛速度快、参数设置简单等优点,在机器学习和工程优化领域得到了广泛应用。
本文提出一种基于灰狼算法优化高斯过程回归的模型 (GWO-GPR),将 GWO 应用于 GPR 超参数优化,以提高水电预测的精度。GWO-GPR 模型充分利用了 GWO 算法的全局搜索能力和 GPR 模型的非线性建模能力,在水电预测中取得了良好的效果。
2. 高斯过程回归 (GPR)
高斯过程回归 (GPR) 是一种非参数机器学习方法,它将函数视为一个随机过程,并使用高斯过程来描述该随机过程。GPR 模型的基本思想是利用先验知识和观测数据,对未知函数进行预测。
2.1 高斯过程
高斯过程是一个随机过程,其所有有限维分布均为高斯分布。换句话说,高斯过程是由一个连续函数组成的随机函数,这些函数的值服从高斯分布。
一个高斯过程可以由其均值函数 m(x) 和协方差函数 k(x, x') 来定义,其中:
-
m(x) 表示在 x 处的函数期望值;
-
k(x, x') 表示在 x 和 x' 处的函数值的协方差。
2.2 GPR 模型
GPR 模型假设待预测的函数 f(x) 遵循一个高斯过程,并利用观测数据来学习这个高斯过程。假设观测数据为 D = {(x_i, y_i)}_{i=1}^N,其中 x_i 为输入,y_i 为输出。
根据贝叶斯定理,可以得到在给定观测数据 D 的情况下,函数 f(x) 的后验分布。后验分布也是一个高斯过程,其均值函数和协方差函数分别为:
-
m(x) = K(x, X)(K(X, X) + σ^2I)^{-1}Y
-
K(x, x') = K(x, X)(K(X, X) + σ^2I)^{-1}K(X, x')
其中:
-
X 为所有观测数据的输入向量;
-
Y 为所有观测数据的输出向量;
-
σ^2 为噪声水平;
-
I 为单位矩阵;
-
K(x, X) 为 x 和所有观测数据的输入向量的协方差矩阵;
-
K(X, X) 为所有观测数据的输入向量之间的协方差矩阵。
根据后验分布,可以得到在 x 处的预测值 f(x) 的期望值和方差。
3. 灰狼算法 (GWO)
灰狼算法 (GWO) 是一种新型的元启发式优化算法,其灵感来源于灰狼群体狩猎的行为。GWO 算法模拟灰狼群体的社会等级制度和狩猎策略,通过对灰狼个体的行为进行建模,实现对目标函数的优化。
3.1 灰狼群体的社会等级制度
在灰狼群体中,存在着严格的社会等级制度。每个灰狼个体都属于一个特定的等级,等级越高,个体对群体的决策权就越大。
灰狼群体等级结构通常由以下四个等级组成:
-
α 狼:领导者,决定群体的狩猎策略,并对其他灰狼进行控制;
-
β 狼:副领导者,协助 α 狼进行决策,并负责训练狼群;
-
δ 狼:侦察员,负责探索新的狩猎区域;
-
ω 狼:其他灰狼,负责跟随 α 狼和 β 狼进行狩猎。
3.2 灰狼算法的狩猎策略
灰狼群体狩猎时,会采取以下策略:
-
围捕猎物:α 狼、β 狼和 δ 狼会包围猎物,并将其驱赶到一个狭小的区域;
-
攻击猎物:当猎物被困住时,α 狼、β 狼和 δ 狼会共同攻击猎物,最终将其捕获。
3.3 GWO 算法的数学模型
GWO 算法利用灰狼群体的社会等级制度和狩猎策略,对灰狼个体的行为进行建模,实现对目标函数的优化。
GWO 算法的数学模型可以表示为:
X_i = a_1 * X_α + a_2 * X_β + a_3 * X_δ
其中:
-
X_i 为第 i 只灰狼的位置向量;
-
X_α、X_β、X_δ 分别为 α 狼、β 狼和 δ 狼的位置向量;
-
a_1、a_2、a_3 为随机系数,用于控制灰狼个体向 α 狼、β 狼和 δ 狼的位置靠近的程度。
4. GWO-GPR 模型
GWO-GPR 模型将 GWO 算法应用于 GPR 超参数优化,以提高水电预测的精度。GWO-GPR 模型的流程如下:
-
初始化灰狼群体:随机生成 N 个灰狼个体,每个个体对应于一组 GPR 超参数;
-
计算适应度值:利用每个灰狼个体对应的 GPR 模型对水电数据进行预测,并计算模型的预测误差,作为适应度值;
-
更新灰狼个体位置:根据适应度值,更新灰狼个体的位置,使适应度值更高的灰狼个体靠近最优解;
-
终止条件:当满足预设的终止条件,例如达到最大迭代次数或适应度值达到阈值时,停止迭代。
GWO-GPR 模型的具体实现步骤如下:
4.1 数据准备
收集历史水电数据,并将其分为训练集和测试集。训练集用于训练 GPR 模型,测试集用于评估模型的预测性能。
4.2 初始化 GWO 算法
-
确定灰狼群体的大小 N;
-
随机生成 N 个灰狼个体,每个个体对应于一组 GPR 超参数。
4.3 计算适应度值
利用每个灰狼个体对应的 GPR 模型对训练集进行预测,并计算模型的预测误差,作为适应度值。
4.4 更新灰狼个体位置
-
计算 α 狼、β 狼和 δ 狼的位置向量;
-
根据 GWO 算法的数学模型,更新灰狼个体的位置;
-
更新适应度值。
4.5 终止条件
-
当满足预设的终止条件时,停止迭代。
5. 结论
本文提出了一种基于灰狼算法优化高斯过程回归的模型 (GWO-GPR),将 GWO 算法应用于 GPR 超参数优化,以提高水电预测的精度。实验结果表明,GWO-GPR 模型在水电预测方面优于传统的 GPR 模型,并具有更高的精度和鲁棒性。
GWO-GPR 模型能够有效地克服 GPR 模型对超参数敏感的影响,并提供更加准确和可靠的水电预测结果。该模型为电力系统调度、能源管理和电力市场交易提供了重要的参考。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类