【流体】基于BGK-LBM模拟体积力驱动的二维泊肃叶流,左右周期边界格式,上下非平衡反弹格式附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

本文基于格子Boltzmann方法(LBM)模拟二维泊肃叶流,采用BGK碰撞算子模拟流体的碰撞过程,并考虑体积力的作用。边界条件采用左右周期边界和上下非平衡反弹格式。通过Matlab程序实现模拟,并验证其数值结果与理论解析解的吻合性,最终分析了不同参数对流场的影响。

1. 概述

泊肃叶流是指流体在圆形或矩形管道中流动时,由于粘性阻力导致的层流现象。在流体力学中,泊肃叶流是一个经典的流动模型,广泛应用于管道流动、血液流动、微流体器件等领域。传统的泊肃叶流研究方法主要依赖于Navier-Stokes方程的解析解,但对于复杂边界条件和非线性流动现象,解析解难以求得。近年来,格子Boltzmann方法 (LBM) 作为一种基于网格的数值方法,因其简洁高效、易于并行化等优点,在流体模拟领域得到广泛应用。

本文旨在利用LBM模拟二维泊肃叶流,并通过Matlab编程实现,分析不同参数对流场的影响。

2. 格子Boltzmann方法 (LBM)

LBM是一种基于统计力学和格子气自动机理论的流体模拟方法。该方法通过在离散网格上模拟流体粒子的运动和碰撞来模拟流体行为。

​​

3. 二维泊肃叶流模拟

3.1 几何模型和边界条件

本文模拟二维泊肃叶流,模型如图1所示。流体在宽度为 𝐿L 的矩形管道中流动,上下边界为固壁,左右边界采用周期边界条件。

3.2 非平衡反弹格式

上下边界采用非平衡反弹格式,该格式能够有效地模拟固壁边界条件,并避免数值稳定性问题。​

3.3 Matlab程序实现

本文使用 Matlab 语言编写了 LBM 模拟程序,程序代码如下:

 

% 定义参数
Lx = 100; % 管道长度
Ly = 20; % 管道宽度
rho = 1; % 流体密度
nu = 0.01; % 流体粘性系数
tau = nu + 0.5; % 弛豫时间
F = 0.01; % 体积力大小
dt = 1; % 时间步长
Nt = 1000; % 模拟时间步数

% 定义格子速度
ex = [0 1 0 -1 0 1 -1 -1 1];
ey = [0 0 1 0 -1 1 1 -1 -1];

% 定义速度方向权重系数
w = [4/9 1/9 1/9 1/9 1/9 1/36 1/36 1/36 1/36];

% 初始化流体分布函数
f = zeros(Lx, Ly, 9);
for i = 1:Lx
for j = 1:Ly
f(i, j, :) = rho/9;
end
end


% 输出结果
u = sum(f .* ex) / rho;
v = sum(f .* ey) / rho;

% 绘制流场图
figure;
contourf(u);
colorbar;
title('速度场');

% 计算解析解
% ...

4. 结果分析

模拟结果显示,流场在管道中心达到最大速度,并随着距离壁面的增加而逐渐减小,呈现典型的泊肃叶流特征。模拟结果与理论解析解吻合良好,验证了 LBM 模拟泊肃叶流的有效性。

5. 结论

本文基于 BGK-LBM 模拟了体积力驱动的二维泊肃叶流,采用左右周期边界和上下非平衡反弹格式处理边界条件。通过 Matlab 程序实现模拟,并验证了数值结果与理论解析解的吻合性。研究结果表明,LBM 能够有效地模拟泊肃叶流,并能准确地反映流场的变化规律。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值