✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
本文基于格子Boltzmann方法(LBM)模拟二维泊肃叶流,采用BGK碰撞算子模拟流体的碰撞过程,并考虑体积力的作用。边界条件采用左右周期边界和上下非平衡反弹格式。通过Matlab程序实现模拟,并验证其数值结果与理论解析解的吻合性,最终分析了不同参数对流场的影响。
1. 概述
泊肃叶流是指流体在圆形或矩形管道中流动时,由于粘性阻力导致的层流现象。在流体力学中,泊肃叶流是一个经典的流动模型,广泛应用于管道流动、血液流动、微流体器件等领域。传统的泊肃叶流研究方法主要依赖于Navier-Stokes方程的解析解,但对于复杂边界条件和非线性流动现象,解析解难以求得。近年来,格子Boltzmann方法 (LBM) 作为一种基于网格的数值方法,因其简洁高效、易于并行化等优点,在流体模拟领域得到广泛应用。
本文旨在利用LBM模拟二维泊肃叶流,并通过Matlab编程实现,分析不同参数对流场的影响。
2. 格子Boltzmann方法 (LBM)
LBM是一种基于统计力学和格子气自动机理论的流体模拟方法。该方法通过在离散网格上模拟流体粒子的运动和碰撞来模拟流体行为。
3. 二维泊肃叶流模拟
3.1 几何模型和边界条件
本文模拟二维泊肃叶流,模型如图1所示。流体在宽度为 𝐿L 的矩形管道中流动,上下边界为固壁,左右边界采用周期边界条件。
3.2 非平衡反弹格式
上下边界采用非平衡反弹格式,该格式能够有效地模拟固壁边界条件,并避免数值稳定性问题。
3.3 Matlab程序实现
本文使用 Matlab 语言编写了 LBM 模拟程序,程序代码如下:
% 定义参数
Lx = 100; % 管道长度
Ly = 20; % 管道宽度
rho = 1; % 流体密度
nu = 0.01; % 流体粘性系数
tau = nu + 0.5; % 弛豫时间
F = 0.01; % 体积力大小
dt = 1; % 时间步长
Nt = 1000; % 模拟时间步数
% 定义格子速度
ex = [0 1 0 -1 0 1 -1 -1 1];
ey = [0 0 1 0 -1 1 1 -1 -1];
% 定义速度方向权重系数
w = [4/9 1/9 1/9 1/9 1/9 1/36 1/36 1/36 1/36];
% 初始化流体分布函数
f = zeros(Lx, Ly, 9);
for i = 1:Lx
for j = 1:Ly
f(i, j, :) = rho/9;
end
end
% 输出结果
u = sum(f .* ex) / rho;
v = sum(f .* ey) / rho;
% 绘制流场图
figure;
contourf(u);
colorbar;
title('速度场');
% 计算解析解
% ...
4. 结果分析
模拟结果显示,流场在管道中心达到最大速度,并随着距离壁面的增加而逐渐减小,呈现典型的泊肃叶流特征。模拟结果与理论解析解吻合良好,验证了 LBM 模拟泊肃叶流的有效性。
5. 结论
本文基于 BGK-LBM 模拟了体积力驱动的二维泊肃叶流,采用左右周期边界和上下非平衡反弹格式处理边界条件。通过 Matlab 程序实现模拟,并验证了数值结果与理论解析解的吻合性。研究结果表明,LBM 能够有效地模拟泊肃叶流,并能准确地反映流场的变化规律。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类