✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
随着无人装备的普及,无人船艇的应用越来越广泛,对海军无人船艇作战行为的研究也变得十分热门,无人船艇的穿透与拦截成为重要的研究课题。本文针对红蓝双方无人水面艇 (USV) 的攻防策略优化问题进行了研究。
首先,针对蓝方无人艇的穿透问题,建立了包含两个风险因素的蓝方风险相关模型。利用分段负指数函数和二次函数分别约束蓝方 USV 的 y 方向速度。红方防御问题可以分为两个方面:红方 USV 集群的最佳编队以最大化防御范围;红方整体机动策略。对于编队方案,采用蒙特卡罗方法计算红方能够拦截蓝方 USV 的最大有效区域,该区域等效于半径为 123.5m 的圆形。针对红方机动策略,初始采用直接指向蓝方的策略。利用状态空间转移模型 (S-S 模型) 对红蓝双方 USV 在不同时刻的位置和方向角进行模拟计算,采用无穷小方法将运动在每个小时间段内近似为匀速直线运动。利用蒙特卡罗方法确定蓝方 USV 能够成功穿透的初始位置。结果表明,蓝方 USV 从接近初始点 (7000, 3500) 的位置出发会被拦截;蓝方 USV 从其他位置出发能够成功穿透,穿透率为 0.976。
其次,针对蓝方无人艇的穿透时间优化问题,在红方采用直接指向策略的情况下,利用直接搜索方法找到 Mmin=1400m。采用模拟退火算法 (S-A Algorithm) 对蓝方 USV 的风险相关模型参数进行优化,蓝方的最快穿透时间为 412 秒。随后对红方机动策略进行改进,采用 y 方向直接对齐方法,在此策略下找到 Mmax=7800m。
再次,针对红蓝双方无人艇数量分配及编队策略问题,分别对 USV 数量分配模型和集群机动策略进行了求解。基于后者,分别建立了独立直接拦截模型和区域防御拦截模型,探讨了问题特定条件下的拦截效果,并探索了其能力极限。最终得到 Mmax=15000m。
最后,在模型验证部分,通过 MATLAB 仿真对各个阶段的整体过程进行模拟,调整模型中个别问题,解决边界判断和方向改变问题,使模型更具实用性。
本文的研究结果为无人船艇对抗策略优化提供了理论基础和参考价值,为未来无人船艇作战行为研究提供了新的思路和方向。
⛳️ 运行结果
🔗 参考文献
[1] Ouhsaine Lahoucine, Ramenah Harry, El Ganaoui Mohammed, et al. Dynamic state-space model and performance analysis for solar active walls embedded phase change material. 2020, 24
[2] Gao Fugang, Zhang Gao. Effectiveness analysis of maritime blockade and interception operations[J]. Military Operations Research and Systems Engineering, 2014, 28(01): 30-32+60.
[3] Li Min, Li Bin, Huang Hao, Liu Lu, Li Ruijiang, Sun Chunxing. Based on 5VS5 simulation robot soccer area defense strategy design [J]. Digital Technology and Application, 2011 (10): 172-173.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类