【无人艇】基于模拟退火算法实现红蓝无人水面艇舰队对抗演练和攻防附Matlab代码和论文

    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

​随着无人装备的普及,无人船艇的应用越来越广泛,对海军无人船艇作战行为的研究也变得十分热门,无人船艇的穿透与拦截成为重要的研究课题。本文针对红蓝双方无人水面艇 (USV) 的攻防策略优化问题进行了研究。

​首先,针对蓝方无人艇的穿透问题,建立了包含两个风险因素的蓝方风险相关模型。利用分段负指数函数和二次函数分别约束蓝方 USV 的 y 方向速度。红方防御问题可以分为两个方面:红方 USV 集群的最佳编队以最大化防御范围;红方整体机动策略。对于编队方案,采用蒙特卡罗方法计算红方能够拦截蓝方 USV 的最大有效区域,该区域等效于半径为 123.5m 的圆形。针对红方机动策略,初始采用直接指向蓝方的策略。利用状态空间转移模型 (S-S 模型) 对红蓝双方 USV 在不同时刻的位置和方向角进行模拟计算,采用无穷小方法将运动在每个小时间段内近似为匀速直线运动。利用蒙特卡罗方法确定蓝方 USV 能够成功穿透的初始位置。结果表明,蓝方 USV 从接近初始点 (7000, 3500) 的位置出发会被拦截;蓝方 USV 从其他位置出发能够成功穿透,穿透率为 0.976。

​其次,针对蓝方无人艇的穿透时间优化问题,在红方采用直接指向策略的情况下,利用直接搜索方法找到 Mmin=1400m。采用模拟退火算法 (S-A Algorithm) 对蓝方 USV 的风险相关模型参数进行优化,蓝方的最快穿透时间为 412 秒。随后对红方机动策略进行改进,采用 y 方向直接对齐方法,在此策略下找到 Mmax=7800m。

​再次,针对红蓝双方无人艇数量分配及编队策略问题,分别对 USV 数量分配模型和集群机动策略进行了求解。基于后者,分别建立了独立直接拦截模型和区域防御拦截模型,探讨了问题特定条件下的拦截效果,并探索了其能力极限。最终得到 Mmax=15000m。

​最后,在模型验证部分,通过 MATLAB 仿真对各个阶段的整体过程进行模拟,调整模型中个别问题,解决边界判断和方向改变问题,使模型更具实用性。

​本文的研究结果为无人船艇对抗策略优化提供了理论基础和参考价值,为未来无人船艇作战行为研究提供了新的思路和方向。

⛳️ 运行结果

🔗 参考文献

[1] Ouhsaine Lahoucine, Ramenah Harry, El Ganaoui Mohammed, et al. Dynamic state-space model and performance analysis for solar active walls embedded phase change material. 2020, 24

[2] Gao Fugang, Zhang Gao. Effectiveness analysis of maritime blockade and interception operations[J]. Military Operations Research and Systems Engineering, 2014, 28(01): 30-32+60.

[3] Li Min, Li Bin, Huang Hao, Liu Lu, Li Ruijiang, Sun Chunxing. Based on 5VS5 simulation robot soccer area defense strategy design [J]. Digital Technology and Application, 2011 (10): 172-173.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值