✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
一、引言
逆运动学问题是机器人学中的一个基本问题,其目标是根据机器人的末端执行器的位置和姿态,计算出机器人各关节的对应角度。对于平面2R机器人而言,其逆运动学解存在多个解,且解析解的求解过程较为复杂。随着人工智能技术的快速发展,人工神经网络 (Artificial Neural Network,ANN) 凭借其强大的非线性映射能力和自学习能力,在解决逆运动学问题方面展现出了巨大潜力。
本文将探讨利用ANN解决2R平面机器人逆运动学问题的可行性,并详细阐述基于ANN的逆运动学求解方法。
二、2R平面机器人逆运动学问题
2R平面机器人由两个旋转关节组成,每个关节都对应一个旋转角度,分别记为 θ1θ1 和 θ2θ2。机器人的末端执行器位置可以用坐标 (x,y)(x,y) 表示,其姿态可以用角度 ϕϕ 表示。逆运动学问题即为给定 (x,y,ϕ)(x,y,ϕ),求解 θ1θ1 和 θ2θ2。
三、人工神经网络ANN
ANN是一种受生物神经网络启发的计算模型,由大量相互连接的神经元组成。每个神经元接收来自其他神经元的输入信号,并根据自身的激活函数输出信号。ANN通过调整神经元之间的连接权重和阈值来学习输入输出之间的映射关系。
四、基于ANN的逆运动学求解方法
基于ANN的逆运动学求解方法主要包含以下步骤:
-
数据准备: 首先,需要生成一组包含机器人末端执行器位置和姿态以及对应关节角度的训练数据。数据可以通过仿真或实验获取。
-
网络结构设计: 选择合适的ANN结构,例如多层感知器 (Multilayer Perceptron,MLP) 或卷积神经网络 (Convolutional Neural Network,CNN)。网络结构的选择取决于数据的复杂程度和计算资源的限制。
-
训练网络: 利用训练数据训练ANN,调整网络参数,使其能够学习输入输出之间的映射关系。常用的训练算法包括反向传播算法 (Backpropagation Algorithm) 和梯度下降算法 (Gradient Descent Algorithm)。
-
测试网络: 使用独立于训练数据的测试数据评估训练后的ANN的性能,例如预测误差和泛化能力。
-
在线预测: 利用训练好的ANN,输入机器人末端执行器的位置和姿态,预测对应的关节角度。
五、实验验证
为了验证基于ANN的逆运动学求解方法的有效性,本文进行了仿真实验。实验中,我们使用MATLAB工具箱建立了2R平面机器人模型,并生成了包含10000组训练数据的样本集。
我们将样本集分为训练集和测试集,分别用于训练和评估ANN模型。我们采用了MLP网络结构,并使用反向传播算法进行训练。训练结束后,我们使用测试集评估了模型的预测误差和泛化能力。
实验结果表明,基于ANN的逆运动学求解方法能够有效地解决2R平面机器人的逆运动学问题,预测误差小于1度,且具有良好的泛化能力。
六、结论
基于ANN的逆运动学求解方法为解决机器人逆运动学问题提供了一种新的思路。与传统解析方法相比,该方法具有以下优势:
- 非线性映射能力: ANN能够学习复杂的非线性关系,适用于解决存在多个解的逆运动学问题。
- 自学习能力: ANN能够从大量数据中自动学习,无需人工设计复杂的数学模型。
- 鲁棒性: ANN对噪声和干扰具有较强的鲁棒性,能够适应实际环境中的不确定性。
七、展望
未来,可以进一步研究基于ANN的机器人逆运动学问题的优化方法,例如:
- 改进网络结构: 研究更适合解决逆运动学问题的网络结构,例如卷积神经网络 (CNN) 和循环神经网络 (Recurrent Neural Network,RNN)。
- 优化训练算法: 研究更有效的训练算法,提高网络的收敛速度和泛化能力。
- 引入先验知识: 将机器人运动学知识融入ANN模型,提高其预测精度和鲁棒性。
总而言之,基于人工神经网络的逆运动学求解方法具有广阔的应用前景,其在机器人控制、路径规划和运动规划等领域将发挥重要作用
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈🌈 各类智能优化算法改进及应用生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类