【无人机编队】基于matlab模拟输出调节一致性无人机编队控制

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要:无人机编队作为近年来研究的热点,在军事侦察、灾难救援、环境监测等领域有着广泛的应用前景。为了实现无人机编队的高效协同,本文针对输出调节一致性问题,提出了一种基于Matlab的模拟方法,通过对多智能体系统状态和输出的调节,实现了无人机编队的稳定飞行和编队形状保持。

关键词:无人机编队,输出调节一致性,Matlab模拟

1. 绪论

近年来,随着无人机技术的快速发展,无人机编队因其在军事、民用领域巨大的应用潜力而受到广泛关注。相较于单架无人机,无人机编队具有更高的效率、更强的鲁棒性和更灵活的操作性,使其在军事侦察、灾难救援、环境监测、农业植保等方面展现出独特的优势。

无人机编队的核心问题之一是编队控制,即如何设计有效的控制策略,使多架无人机能够协同工作,实现预定的编队形状和轨迹。传统的编队控制方法主要基于leader-follower模式,即指定一架无人机为leader,其余无人机作为follower,根据leader的指令进行跟随。然而,这种模式存在一定的局限性,例如,leader的故障会导致整个编队失效。

为了克服leader-follower模式的缺点,近年来,基于一致性理论的无人机编队控制方法引起了广泛的研究兴趣。一致性是指系统中所有个体在相互交互的影响下,最终达到一致的状态。输出调节一致性则是指系统中所有个体的输出能够在相互交互的影响下,跟踪leader的输出信号,从而实现编队的稳定运行。

2. 输出调节一致性模型

为了实现无人机编队的输出调节一致性,本文采用以下模型:

3. 基于Matlab的模拟方法

为了验证上述模型和控制方法的有效性,本文利用Matlab软件进行仿真实验。仿真步骤如下:

  1. 定义系统参数: 设定无人机系统的状态空间模型参数 𝐴𝑖Ai,𝐵𝑖Bi,𝐶C,以及通信拓扑图。

  2. 设计控制律: 根据一致性理论,设计基于输出调节一致性算法的控制律,例如,基于分布式观测器和鲁棒自适应控制方法的控制律。

  3. 构建仿真模型: 在Matlab中搭建无人机编队系统的仿真模型,并设定初始条件和仿真时间。

  4. 执行仿真: 运行仿真程序,并记录仿真结果。

  5. 分析结果: 通过分析仿真结果,验证控制方法的有效性和鲁棒性,并评估编队系统的性能,例如编队误差、收敛速度等。

4. 仿真结果与分析

本文进行了如下仿真实验:

  • 实验场景: 考虑5架无人机组成的编队,其中1号无人机为leader,其余无人机为follower。

  • 通信拓扑: 采用环形通信拓扑。

  • 控制方法: 采用基于分布式观测器和鲁棒自适应控制方法的输出调节一致性控制律。

仿真结果表明,基于该控制方法,5架无人机能够有效地跟踪leader的输出信号,并实现编队形状的稳定保持。仿真结果还表明,该控制方法具有较好的鲁棒性,能够有效地抵御外界干扰和系统参数的变化。

5. 结论

本文针对无人机编队的输出调节一致性问题,提出了一种基于Matlab的模拟方法。通过仿真实验,验证了该方法的有效性,并证明了其能够有效地实现无人机编队的稳定飞行和编队形状保持。该方法为无人机编队的控制提供了新的思路,具有重要的理论意义和应用价值。

⛳️ 运行结果

🔗 参考文献

[1] 夏路.无人机编队导航与控制系统研究[D].哈尔滨工业大学,2014.DOI:10.7666/d.D592303.

[2] 熊涛,曹科才,柴运,等.基于输入约束一致性算法的多无人机编队控制[J].计算机工程与应用, 2018, 54(12):7.DOI:10.3778/j.issn.1002-8331.1704-0458.

[3] 朱旭,张逊逊,闫茂德,张昌利.基于一致性的无人机编队控制策略[J].计算机仿真, 2016(8):5.DOI:10.3969/j.issn.1006-9348.2016.08.007.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值