【无人机三维路径规划】基于梦境算法SCA实现多无人机协同集群避障路径规划(目标函数:最低成本:路径、高度、威胁、转角)附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无人机(Unmanned Aerial Vehicle, UAV)技术的飞速发展,使其在军事侦察、环境监测、物流运输、应急救援等领域展现出巨大的应用潜力。特别是在复杂环境下的多无人机协同作业,对提升任务效率、扩大作业范围具有重要意义。然而,如何在复杂环境下,保证多无人机安全、高效地完成任务,面临着诸多挑战,其中三维路径规划是关键环节之一。三维路径规划需要在三维空间中找到一条或多条安全、可行且优化的路径,以满足任务需求。同时,考虑到实际应用中障碍物的存在以及对任务成本的限制,多无人机协同集群避障路径规划问题变得更加复杂。

传统的路径规划算法,如A*算法、Dijkstra算法等,在简单环境中表现良好,但面对高维空间和复杂的约束条件时,往往面临计算量大、搜索效率低等问题。近年来,受到自然界生物行为启发,涌现出诸多智能优化算法,如遗传算法(Genetic Algorithm, GA)、粒子群算法(Particle Swarm Optimization, PSO)、蚁群算法(Ant Colony Optimization, ACO)等。这些算法具有全局搜索能力强、鲁棒性好等优点,已被广泛应用于路径规划领域。然而,这些算法在解决复杂多约束优化问题时,仍可能陷入局部最优解,导致无法找到最优路径。

梦境算法(Sine Cosine Algorithm, SCA)是一种新兴的元启发式优化算法,其灵感来源于正弦和余弦函数的振荡特性。SCA算法通过正弦和余弦函数动态调整个体位置,从而实现全局搜索和局部搜索的平衡。该算法具有结构简单、参数少、易于实现等优点,并在诸多优化问题中展现出良好的性能。本文旨在探讨基于梦境算法SCA实现多无人机协同集群避障路径规划的方法,并综合考虑路径长度、飞行高度、威胁程度和转角大小等多重因素,构建多目标优化模型,以实现最低成本的路径规划。

问题建模与目标函数

多无人机协同集群避障路径规划问题可以建模为:在给定的三维空间中,存在多个无人机需要从各自的起始点到达各自的目标点,同时需要避开空间中存在的静态和动态障碍物。规划的目标是找到满足约束条件且成本最低的路径。为了量化任务成本,本文综合考虑以下四个方面:

  1. 路径长度(Path Length): 这是最直接的成本因素,较短的路径意味着更少的能量消耗和时间成本。路径长度可以通过计算路径上各航路点之间的欧氏距离之和来评估。

  2. 飞行高度(Flight Altitude): 无人机在不同高度飞行,受到的风力、气流等影响不同,同时,也可能涉及不同高度的空域管制。因此,适当的高度规划可以降低飞行风险和成本。一般来说,过高或过低的飞行高度都可能增加成本。

  3. 威胁程度(Threat Level): 在实际应用中,某些区域可能存在威胁源,如敌方雷达、地面防空设施等。无人机应尽可能避开这些威胁区域,减少被侦测或攻击的风险。威胁程度可以通过建立威胁模型来评估,例如采用高斯函数或其他合适的函数来描述威胁程度随距离衰减的特性。

  4. 转角大小(Turning Angle): 频繁的大角度转弯会增加无人机的能量消耗,降低飞行的稳定性,甚至可能导致飞行事故。因此,应尽量减少路径中转角的大小。转角大小可以通过计算相邻航段向量之间的夹角来评估。

基于以上分析,本文构建如下多目标优化模型:

Minimize F = w1 * PathLength + w2 * AltitudeCost + w3 * ThreatLevel + w4 * TurningAngle

Subject to:

  • PathLength = Σ dist(pi, pi+1),其中pi表示路径上的第i个航路点,dist(pi, pi+1)表示pipi+1之间的欧氏距离。

  • AltitudeCost = Σ |hi - hoptimal|,其中hi表示第i个航路点的高度,hoptimal表示最优飞行高度。

  • ThreatLevel = Σ threat(pi),其中threat(pi)表示第i个航路点的威胁程度。

  • TurningAngle = Σ angle(vi, vi+1),其中vi表示第i个航段的向量,angle(vi, vi+1)表示vivi+1之间的夹角。

  • ObstacleAvoidance(Path) = True,表示路径必须避开所有障碍物。

  • CollisionAvoidance(Path1, Path2, ..., PathN) = True,表示多架无人机之间必须避免碰撞。

  • WaypointConstraints(Path) = True,表示路径必须满足起始点和目标点的约束。

其中,w1w2w3w4分别为路径长度、飞行高度、威胁程度和转角大小的权重系数,用于调整各个因素在目标函数中的重要性。 ObstacleAvoidanceCollisionAvoidance, 和 WaypointConstraints 分别表示避障约束、防碰撞约束和航路点约束。

基于梦境算法SCA的路径规划方法

本文提出一种基于梦境算法SCA的多无人机协同集群避障路径规划方法。该方法的主要步骤如下:

  1. 初始化种群: 随机生成初始种群,每个个体代表一条可能的无人机路径。路径可以表示为一系列航路点的坐标。每个无人机对应一个种群,或者多个无人机共享一个种群,具体取决于协同方式。需要注意的是,初始路径也需要满足一定的约束条件,如避开明显的障碍物、满足起始点和目标点约束等。

  2. 评估适应度: 对于种群中的每个个体,根据上述目标函数计算其适应度值。适应度值越小,表示路径的成本越低,个体越优秀。

  3. SCA算法更新: 使用梦境算法SCA更新种群中每个个体的位置。SCA算法的核心公式如下:

    其中,xi(t)表示第i个个体在第t次迭代时的位置,xi(t+1)表示更新后的位置,pbesti表示第i个个体迄今为止找到的最优位置,r1r2r3r4是随机参数。r1控制搜索范围,r2决定搜索方向,r3控制目标方向,r4决定使用正弦还是余弦函数。参数r1通常采用线性递减策略,使其在迭代初期具有较大的搜索范围,在迭代后期逐渐收敛,以平衡全局搜索和局部搜索能力。

    • xi(t+1) = xi(t) + r1 * sin(r2) * |r3 * pbesti - xi(t)|, if r4 < 0.5

    • xi(t+1) = xi(t) + r1 * cos(r2) * |r3 * pbesti - xi(t)|, if r4 >= 0.5

  4. 避障处理: 在更新个体位置后,需要检查新的路径是否与障碍物发生碰撞。如果发生碰撞,则需要进行避障处理。常用的避障方法包括:

    对于多无人机协同,还需要进行防碰撞处理,避免无人机之间发生碰撞。防碰撞方法类似避障处理,可以采用距离约束、速度控制等策略。

    • 随机扰动法: 对碰撞的航路点进行随机扰动,使其远离障碍物。

    • 惩罚函数法: 在目标函数中加入惩罚项,惩罚与障碍物发生碰撞的路径。

    • 局部路径重规划: 在障碍物附近进行局部路径重规划,找到绕过障碍物的路径。

  5. 更新最优解: 更新种群中的最优解,即找到迄今为止成本最低的路径。

  6. 迭代终止条件: 判断是否满足迭代终止条件。常见的终止条件包括达到最大迭代次数、找到满足要求的路径、或者连续多次迭代最优解没有明显改善。

  7. 输出最优路径: 如果满足终止条件,则输出最优路径。

SCA算法的改进策略

为了进一步提升SCA算法在解决多无人机协同集群避障路径规划问题中的性能,可以考虑以下改进策略:

  1. 自适应参数调整: 根据迭代过程中的种群多样性和适应度变化情况,动态调整SCA算法的参数,如r1r3等,以更好地平衡全局搜索和局部搜索能力。

  2. 混合优化策略: 将SCA算法与其他优化算法结合,例如将SCA算法与局部搜索算法结合,利用SCA算法的全局搜索能力找到较好的初始解,然后利用局部搜索算法进行精细优化。

  3. 协同策略优化: 针对多无人机协同问题,可以引入协同策略,例如采用领导者-跟随者模式、任务分配机制等,以提高协同效率和鲁棒性。

  4. 并行计算: 利用并行计算技术,同时对多个个体进行评估和更新,可以显著缩短计算时间,提高算法的效率。

实验结果与分析

通过仿真实验验证本文提出的基于梦境算法SCA的多无人机协同集群避障路径规划方法的有效性。实验设置如下:

  • 场景设置: 在三维空间中设置静态障碍物和动态障碍物,模拟复杂环境。

  • 无人机参数: 设置无人机的飞行速度、转弯半径、最大飞行高度等参数。

  • 目标函数权重: 根据实际应用需求,设置路径长度、飞行高度、威胁程度和转角大小的权重系数。

  • SCA算法参数: 设置种群大小、最大迭代次数、参数r1的初始值和递减策略等。

实验结果表明,本文提出的方法能够有效地规划出多无人机安全、可行且优化的路径,能够避开静态和动态障碍物,并满足各种约束条件。与传统的路径规划算法和基本的SCA算法相比,本文提出的方法具有以下优点:

  • 更低的成本: 通过综合考虑路径长度、飞行高度、威胁程度和转角大小等因素,实现了更低成本的路径规划。

  • 更好的避障能力: 采用有效的避障策略,能够更好地避开复杂环境中的障碍物。

  • 更强的鲁棒性: SCA算法具有较强的全局搜索能力和鲁棒性,能够适应不同环境和任务需求。

  • 更高的协同效率: 通过引入协同策略,提高了多无人机协同作业的效率。

结论与展望

本文提出了一种基于梦境算法SCA的多无人机协同集群避障路径规划方法,该方法综合考虑了路径长度、飞行高度、威胁程度和转角大小等多重因素,构建了多目标优化模型,实现了最低成本的路径规划。实验结果表明,该方法能够有效地规划出多无人机安全、可行且优化的路径。

未来研究方向包括:

  • 动态环境下的路径规划: 研究如何应对环境的变化,如障碍物的出现、移动和消失,实现动态路径规划。

  • 考虑能源约束的路径规划: 将能源消耗纳入目标函数,研究如何在满足任务需求的同时,最大限度地节省能源。

  • 安全性更高的路径规划: 进一步提高路径的安全性,例如考虑无人机的可靠性、抗干扰能力等。

  • 更加智能的协同策略: 研究更加智能的协同策略,例如基于强化学习的协同控制方法。

⛳️ 运行结果

🔗 参考文献

[1]罗诚.无人机路径规划算法研究[D].复旦大学,2010.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

基于蜣螂算法(也称为滚粪球甲虫优化算法SCA: Scarab Constellation Algorithm)的无人机协同侦察路径规划是一种相对较新的研究领域。下面将为你简单介绍一下这个主题,并给出一个基础框架下的MATLAB实现思路。 ### 简介 蜣螂算法是从自然界中的一种生物——屎壳郎推粪球的行为得到启发而提出的元启发式搜索算法。它模拟了这种昆虫如何找到优方向滚动它们的食物回到巢穴的过程,在优化问题求解方面展现出良好的性能。当应用于无人机系统(Multi-UAV System) 的任务分配及路径规划时,则需要考虑以下几个关键因素: 1. **环境建模**:包括地理信息、障碍物分布等; 2. **目标设定**:如覆盖区域的大化、能耗小化等特定指标; 3. **约束条件**:例如飞行高度限制、速度范围以及通信距离内的协作机制等; 4. **算法设计**:利用蜣螂算法的特点构建适应函数并调整参数,通过迭代寻优确定每架UAV的佳路线组合; ### MATLAB 实现概述 (代码) 由于完整的源码较长且涉及版权保护等因素不便直接提供完整版本,这里仅展示部分核心思想及其对应的Matlab语言表达形式供参考: ```matlab function [bestPath] = SCA_UAV_PathPlanning(envInfo, targetFunc) % 初始化种群规模 N, 大迭代次数 T_max, 和其他必要的变量... for t=1:T_max % 更新位置公式依据文献[引用论文]中的描述来编写, % 主要考虑当前个体的位置 x(t),全局佳解 g_best, % 随机生成 r_1 到 r_5 来控制探索与开发之间的平衡... for i=1:N % 对每一个候选方案(无人机路径配置) if rand < P_crossover new_x{i} = cross_over(x{i}, partner); else new_x{i} = mutate(x{i}); end fitness(i)=targetFunc(new_x{i}); % 计算适应度值 end [~, idx]=min(fitness); if fitness(idx)<g_best_fit g_best=new_x{idx}; g_best_fit=fitness(idx); end disp(['Iteration ', num2str(t), ': Best Fitness=',num2str(g_best_fit)]); end bestPath=g_best; end ``` 请注意上述只是一个非常简化的示例程序段落,并未包含所有细节内容比如具体的交叉变异操作定义、边界处理措施等实际应用中必不可少的部分。此外,针对具体场景还需要进一步细化模型结构、选择恰当的目标评价标准等等。 如果你对某个环节特别感兴趣或是想要了解更深入的内容,请告诉我!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值