【滤波算法】基于拓展卡尔曼滤波实现惯性导航系统(INS)的误差状态估计附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

惯性导航系统(Inertial Navigation System, INS)是一种自主式的导航定位技术,它利用安装在载体上的惯性测量单元(Inertial Measurement Unit, IMU)实时测量载体的角速度和加速度,并以此推算出载体的位置、速度和姿态等信息。由于INS的自主性、不受外界环境干扰等优点,其在航空航天、船舶航行、机器人导航等领域得到了广泛应用。然而,INS也存在一个固有缺陷,即其导航精度会随着时间推移而不断累积误差。这些误差来源于IMU传感器的固有误差(例如零偏、标度因数误差)、初始对准误差以及计算过程中的舍入误差等。因此,如何有效地抑制INS的误差累积,提高其导航精度,一直是INS领域研究的重要课题。

为了解决INS的误差累积问题,一种常用的方法是采用滤波算法,对INS的误差状态进行估计和补偿。卡尔曼滤波(Kalman Filter, KF)作为一种最优状态估计算法,在INS误差估计中被广泛应用。然而,由于INS中的运动方程通常是非线性的,传统的线性卡尔曼滤波无法直接应用于INS的误差估计。为此,人们提出了多种非线性卡尔曼滤波算法,其中拓展卡尔曼滤波(Extended Kalman Filter, EKF)是应用最为广泛的一种。

本文将重点探讨基于拓展卡尔曼滤波实现INS的误差状态估计。首先,我们将介绍INS的基本原理及其误差特性,分析误差产生的原因和传播规律。其次,我们将推导基于误差状态模型的拓展卡尔曼滤波方程,并详细阐述其实现过程。最后,我们将讨论拓展卡尔曼滤波在INS误差估计中的优缺点,并展望未来的研究方向。

一、惯性导航系统(INS)的基本原理与误差特性

INS的核心思想是利用惯性定律,通过测量载体的角速度和加速度来推算其运动状态。IMU是INS的核心组成部分,它通常由三个陀螺仪和三个加速度计组成。陀螺仪用于测量载体在三个轴向上的角速度,加速度计用于测量载体在三个轴向上的加速度。

INS的工作流程大致可以分为以下几个步骤:

  1. 数据采集:

     IMU实时采集载体的角速度和加速度信息。

  2. 数据预处理:

     对采集到的IMU数据进行滤波、校准等预处理操作,以降低传感器误差的影响。

  3. 姿态解算:

     利用陀螺仪数据解算载体的姿态信息,通常采用四元数法或方向余弦矩阵法。

  4. 速度解算:

     利用加速度计数据,并在姿态解算的辅助下,解算载体的速度信息。

  5. 位置解算:

     利用速度信息解算载体的位置信息。

INS的误差主要来源于以下几个方面:

  1. IMU传感器误差:

     IMU传感器自身存在各种误差,例如零偏(Bias)、标度因数误差(Scale Factor Error)、随机噪声(Random Noise)等。这些误差会直接影响INS的导航精度。

  2. 初始对准误差:

     INS需要进行初始对准,以确定其初始姿态和位置。初始对准误差会随着时间的推移而不断累积,导致导航精度下降。

  3. 计算误差:

     在INS的计算过程中,由于舍入误差、截断误差等因素,也会产生一定的误差。

  4. 安装误差:

     IMU在安装过程中可能存在一定的安装误差,例如安装角度误差等。

INS的误差传播具有复杂的特性。通常,位置误差会随着时间呈立方增长,速度误差会随着时间呈二次增长,姿态误差会随着时间呈线性增长。因此,仅仅依靠INS自身进行导航,其精度会随着时间的推移而迅速下降。

二、基于误差状态模型的拓展卡尔曼滤波方程推导

为了有效地抑制INS的误差累积,需要对INS的误差状态进行估计和补偿。拓展卡尔曼滤波是一种常用的非线性卡尔曼滤波算法,可以用于INS的误差状态估计。

首先,需要建立INS的误差状态模型。通常,INS的误差状态向量可以定义为:

 

ini

x = [δφ, δv, δp, ε, ∇]ᵀ  

其中:

  • δφ:姿态误差向量,表示真实姿态与计算姿态之间的偏差。

  • δv:速度误差向量,表示真实速度与计算速度之间的偏差。

  • δp:位置误差向量,表示真实位置与计算位置之间的偏差。

  • ε:陀螺仪的零偏向量,表示陀螺仪的零偏。

  • ∇:加速度计的零偏向量,表示加速度计的零偏。

接下来,需要建立误差状态模型的动态方程和观测方程。由于INS中的运动方程是非线性的,因此需要进行线性化处理。通常采用一阶泰勒展开法,将非线性方程线性化。

1. 动态方程:

误差状态的动态方程可以表示为:

 

r

δẋ = Fδx + Gω  

其中:

  • F:状态转移矩阵,描述误差状态的传播规律。F矩阵的推导需要根据具体的INS运动方程进行线性化处理。例如,姿态误差的传播与陀螺仪的测量值有关,速度误差的传播与加速度计的测量值和姿态误差有关,位置误差的传播与速度误差有关。陀螺仪和加速度计的零偏通常被建模为随机游走过程。

  • G:系统噪声矩阵,描述系统噪声对误差状态的影响。

  • ω:系统噪声向量,通常假设其服从高斯分布。

2. 观测方程:

为了实现误差状态的估计,需要引入外部观测信息,例如GNSS (Global Navigation Satellite System)数据、高度计数据等。观测方程描述了观测值与误差状态之间的关系。观测方程可以表示为:

 

ini

z = Hδx + ν  

其中:

  • z:观测向量,表示外部观测信息。例如,如果采用GNSS数据作为观测值,则z可以表示GNSS的位置信息与INS计算的位置信息之间的偏差。

  • H:观测矩阵,描述误差状态与观测值之间的关系。H矩阵的推导需要根据具体的观测方式进行。

  • ν:观测噪声向量,通常假设其服从高斯分布。

有了动态方程和观测方程,就可以应用拓展卡尔曼滤波进行误差状态估计。拓展卡尔曼滤波的迭代过程包括以下两个步骤:

1. 预测步骤:

  • 状态预测: δx<sub>k|k-1</sub> = F<sub>k-1</sub>δx<sub>k-1|k-1</sub>

  • 协方差预测: P<sub>k|k-1</sub> = F<sub>k-1</sub>P<sub>k-1|k-1</sub>F<sub>k-1</sub>ᵀ + GQGᵀ

其中:

  • δx<sub>k|k-1</sub>:k时刻的状态预测值,基于k-1时刻的后验估计。

  • P<sub>k|k-1</sub>:k时刻的协方差预测值,反映状态预测的不确定性。

  • Q:系统噪声的协方差矩阵。

2. 更新步骤:

  • 卡尔曼增益: K<sub>k</sub> = P<sub>k|k-1</sub>H<sub>k</sub>ᵀ(H<sub>k</sub>P<sub>k|k-1</sub>H<sub>k</sub>ᵀ + R<sub>k</sub>)<sup>-1</sup>

  • 状态更新: δx<sub>k|k</sub> = δx<sub>k|k-1</sub> + K<sub>k</sub>(z<sub>k</sub> - H<sub>k</sub>δx<sub>k|k-1</sub>)

  • 协方差更新: P<sub>k|k</sub> = (I - K<sub>k</sub>H<sub>k</sub>)P<sub>k|k-1</sub>

其中:

  • K<sub>k</sub>:卡尔曼增益,用于衡量观测信息对状态估计的影响程度。

  • δx<sub>k|k</sub>:k时刻的后验估计值,结合了预测值和观测值的信息。

  • P<sub>k|k</sub>:k时刻的后验协方差矩阵,反映状态估计的不确定性。

  • R:观测噪声的协方差矩阵。

  • I:单位矩阵。

通过不断地进行预测和更新,拓展卡尔曼滤波可以对INS的误差状态进行实时估计。然后,可以利用估计得到的误差状态对INS的输出进行补偿,从而提高INS的导航精度。例如,可以用估计得到的姿态误差对姿态解算结果进行修正,用估计得到的速度误差对速度解算结果进行修正,用估计得到的位置误差对位置解算结果进行修正。

三、拓展卡尔曼滤波在INS误差估计中的优缺点及未来研究方向

拓展卡尔曼滤波作为一种常用的非线性卡尔曼滤波算法,在INS误差估计中具有以下优点:

  1. 简单易实现:

     EKF的实现相对简单,只需要对非线性方程进行一阶泰勒展开即可。

  2. 计算效率较高:

     EKF的计算量相对较小,可以满足实时性的要求。

  3. 应用广泛:

     EKF已经在INS误差估计领域得到了广泛应用,并取得了较好的效果。

然而,拓展卡尔曼滤波也存在一些缺点:

  1. 线性化误差:

     EKF采用一阶泰勒展开法进行线性化处理,忽略了高阶项,可能导致较大的线性化误差,尤其是在非线性程度较高的情况下。

  2. 对初始值敏感:

     EKF对初始值的选择比较敏感,如果初始值选择不当,可能会导致滤波发散。

  3. 协方差矩阵计算复杂:

     EKF需要计算协方差矩阵的逆矩阵,计算量较大,且容易出现数值不稳定问题。

为了克服拓展卡尔曼滤波的缺点,人们提出了多种改进的非线性卡尔曼滤波算法,例如无迹卡尔曼滤波(Unscented Kalman Filter, UKF)、粒子滤波(Particle Filter, PF)等。

  • 无迹卡尔曼滤波:

     UKF采用无迹变换(Unscented Transformation, UT)来逼近非线性函数,避免了线性化过程,能够更好地处理非线性问题。

  • 粒子滤波:

     PF采用蒙特卡洛方法,利用大量粒子来近似状态分布,能够处理任意形式的非线性问题,但计算量较大。

未来的研究方向包括:

  1. 研究更精确的非线性滤波算法:

     例如,可以研究基于深度学习的滤波算法,利用神经网络来学习非线性动态模型和观测模型,从而提高滤波精度。

  2. 研究多传感器融合的滤波方法:

     可以将INS与其他传感器(例如GNSS、激光雷达、视觉传感器)的数据进行融合,利用多传感器的互补性,提高导航精度和可靠性。

  3. 研究自适应滤波算法:

     可以根据INS的运行状态和环境条件,自动调整滤波器的参数,从而提高滤波器的鲁棒性和适应性。

  4. 研究基于云计算的滤波算法:

     可以将滤波算法部署在云计算平台上,利用云计算平台的强大计算能力和存储能力,实现大规模INS数据的处理和分析。

⛳️ 运行结果

🔗 参考文献

[1] 徐金华,许江宁,朱涛,等.降阶扩展卡尔曼滤波在INS/GPS导航系统中的应用[J].兵工学报, 2006.DOI:CNKI:SUN:BIGO.0.2006-04-018.

[2] 徐金华,许江宁,朱涛,等.降阶扩展卡尔曼滤波在INS/GPS导航系统中的应用[J].兵工学报, 2006, 027(004):659-664.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值