【电力系统】考虑电解槽变载启停特性与阶梯式碳交易机制的综合能源系统优化调度研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

综合能源系统(Integrated Energy System, IES)作为应对能源危机和环境污染的重要解决方案,正日益受到广泛关注。它通过多能互补、协同优化,能够有效提高能源利用效率、降低环境排放、增强系统灵活性和可靠性。然而,随着可再生能源渗透率的不断提高,电力系统的波动性与间歇性问题日益凸显,对电网的安全稳定运行提出了更高的要求。另一方面,全球气候变化日益严峻,碳减排已成为全球共识,而传统的碳交易机制在激励企业减排方面存在一定的局限性。因此,如何在IES优化调度中充分考虑可再生能源的消纳,并有效利用碳交易机制,促进能源系统向低碳转型,具有重要的现实意义。

本文将探讨考虑电解槽变载启停特性与阶梯式碳交易机制的IES优化调度问题。具体而言,将重点研究以下几个方面:

一、电解槽变载启停特性建模与优化调度:

电解槽作为一种重要的能源转换设备,能够将电能转化为氢能,从而实现能源的储存和利用。随着氢能经济的兴起,电解槽在IES中的应用越来越广泛。然而,传统的IES优化调度模型往往将电解槽简化为线性设备,忽略了其复杂的运行特性,尤其是变载启停特性。

  • 变载特性:

     电解槽的电解效率并非恒定不变,而是随着负荷率的变化而变化。在高负荷率下,电解槽的效率通常较高,但在低负荷率下,效率会明显下降。因此,在IES优化调度中,需要建立电解槽电解效率与负荷率之间的精确模型,以便更好地评估电解槽的运行成本和效益。

  • 启停特性:

     电解槽的启停过程需要消耗额外的能量,并且会对电解槽的寿命产生影响。频繁的启停不仅会增加运行成本,还可能降低设备的可靠性。因此,在IES优化调度中,需要考虑电解槽的启停成本和寿命约束,避免频繁的启停操作。

针对上述问题,本文将采用混合整数线性规划(MILP)或混合整数非线性规划(MINLP)等优化方法,建立包含电解槽变载启停特性的优化调度模型。该模型将能够更加精确地模拟电解槽的运行状态,并能够优化电解槽的启停时间和运行负荷,从而提高IES的运行效率和经济性。此外,还将探讨如何利用电解槽的柔性运行特性,参与电网的调频和调压,提高电网的稳定性。

二、阶梯式碳交易机制建模与应用:

传统的碳交易机制通常采用单一的碳价,即单位碳排放量的交易价格固定不变。然而,单一的碳价机制在激励企业减排方面存在一定的局限性。当企业减排成本低于碳价时,企业倾向于进行减排,但当减排成本高于碳价时,企业可能选择继续排放,从而导致碳减排效果不佳。

阶梯式碳交易机制则通过设置不同的碳排放量等级,并为每个等级设置不同的碳价,从而更加有效地激励企业减排。具体而言,碳排放量越高的企业,需要支付的碳价越高,从而促使企业采取更加积极的减排措施。

  • 阶梯式碳价设计:

     如何合理地设计阶梯式碳价,是阶梯式碳交易机制能否有效发挥作用的关键。需要综合考虑企业的减排成本、排放水平以及政府的减排目标等因素,才能制定出合理的阶梯式碳价方案。

  • 碳排放量分配:

     如何将碳排放量分配到IES中的各个单元,是另一个需要考虑的问题。可以根据各个单元的能源消耗量、排放因子等因素,进行合理的碳排放量分配。

  • 碳交易收益分配:

     通过碳交易获得的收益,如何分配到IES中的各个参与者,也需要进行合理的考虑,以确保各个参与者的利益得到保障,从而促进IES的可持续发展。

本文将建立阶梯式碳交易机制的数学模型,并将其应用于IES优化调度中。该模型将能够模拟阶梯式碳交易机制对IES运行成本和排放的影响,并能够优化IES的运行方式,从而降低碳排放量,提高IES的经济性和环保性。

三、综合能源系统优化调度模型构建:

在考虑电解槽变载启停特性和阶梯式碳交易机制的基础上,本文将构建一个综合能源系统优化调度模型。该模型将涵盖电力系统、热力系统、天然气系统以及氢能系统等多个能源网络,并能够模拟各个能源网络之间的相互作用。

  • 目标函数:

     目标函数将包含运行成本、碳排放成本以及设备折旧成本等多个方面。通过优化目标函数,可以实现IES的经济性和环保性最大化。

  • 约束条件:

     约束条件将包含电力系统的功率平衡约束、热力系统的热平衡约束、天然气系统的气平衡约束、氢能系统的氢平衡约束以及设备的运行约束等多个方面。通过满足约束条件,可以保证IES的安全稳定运行。

  • 优化算法:

     可以采用混合整数线性规划(MILP)、混合整数非线性规划(MINLP)或者遗传算法等优化算法,求解IES优化调度模型。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值